Skip to main content

Giải bất phương trình \frac{\sqrt{x(x+2)}}{\sqrt{(x+1)^{3}}-\sqrt{x} } ≥ 1

Giải bất phương trình  ≥ 1

Câu hỏi

Nhận biết

Giải bất phương trình \frac{\sqrt{x(x+2)}}{\sqrt{(x+1)^{3}}-\sqrt{x} } ≥ 1


A.
x = \frac{-\sqrt{5}+1}{2}
B.
x = \frac{\sqrt{5}+1}{2}
C.
x = \frac{\sqrt{5}-1}{2}
D.
x = \frac{-1-\sqrt{5}}{2}
Đáp án đúng: C

Lời giải của Luyện Tập 365

Điều kiện : x(x + 2) ≥ 0; x ≥ 0; (x + 1)3 ≥ 0; \sqrt{(x+1)^{3}} - √x ≥ 0 ⇔ x ≥ 0

x ≥ 0 => \sqrt{(x+1)^{3}} - √x > 0

Do vậy \frac{\sqrt{x(x+2)}}{\sqrt{(x+1)^{3}}-\sqrt{x} }  ≥ 1 ⇔ \sqrt{x(x+2)} ≥ \sqrt{(x+1)^{3}} - √x

⇔ x2 + 2x  ≥ x3 + 4x + 1 – 2(x + 1)\sqrt{x(x+1)}

⇔ x3 + 2x2 + 2x + 1 – 2(x + 1)\sqrt{x(x+1)} ≤ 0

⇔ (x + 1)[x2 + x + 1 – 2\sqrt{x(x+1)}] ≤ 0

⇔ x2 + x + 1 – 2 \sqrt{x(x+1)}≤ 0 ⇔ (\sqrt{x(x+1)} - 1)≤ 0

\sqrt{x(x+1)} - 1 = 0 ⇔ \sqrt{x(x+1)} = 1

⇔ x(x + 1) = 1 ⇔ x2 + x – 1 = 0 ⇔ x = \frac{-1+\sqrt{5}}{2}; x = \frac{-1-\sqrt{5}}{2}

Kết hợp điều kiện x > 0 ta được nghiệm của phương trình đã cho là x = \frac{\sqrt{5}-1}{2}

Câu hỏi liên quan

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.