Skip to main content

Chứng minh rằng, với mọi cặp số nguyên k, n (1 ≤ k ≤ n) ta có kC^{k}_{n} = nC^{k-1}_{n-1} Tìm số nguyên n > 4 biết rằng 2C^{0}_{n} + 5C^{1}_{n} + 8C^{2}_{n} + ...+ (3n + 2)C^{n}_{n} = 1600

Chứng minh rằng, với mọi cặp số nguyên k, n (1 ≤ k ≤ n) ta có k = n
Tìm số nguyên n >

Câu hỏi

Nhận biết

Chứng minh rằng, với mọi cặp số nguyên k, n (1 ≤ k ≤ n) ta có kC^{k}_{n} = nC^{k-1}_{n-1}

Tìm số nguyên n > 4 biết rằng 2C^{0}_{n} + 5C^{1}_{n} + 8C^{2}_{n} + ...+ (3n + 2)C^{n}_{n} = 1600


A.
n = 5
B.
n = 6
C.
n = 7
D.
n = 8
Đáp án đúng: C

Lời giải của Luyện Tập 365

Ta có  kC^{k}_{n} = k\frac{n!}{k!(n-k)!} = n\frac{(n-1)!}{(k-1)![(n-1)-(k-1)]!} 

= nC^{k-1}_{n-1} (điều phải chứng minh)

2C^{0}_{n} + 5C^{1}_{n} + 8C^{2}_{n} + ...+ (3n + 2)C^{n}_{n} = 1600

⇔ 3C^{1}_{n} + 6C^{2}_{n} + ... + 3nC^{n}_{n} + 2(C^{0}_{n} + C^{1}_{n} + ... + C^{n}_{n}) = 1600

⇔ 3n(C^{0}_{n-1} + C^{1}_{n-1} + ... + C^{n-1}_{n-1}) + 2(C^{0}_{n} + C^{1}_{n} + ... +C^{n}_{n}) = 1600

⇔ 3n(1 + 1)n - 1 + 2(1 + 1)n = 1600

⇔ 3n.2n -1 + 2n +1 = 1600

⇔ 3n.2n -5 + 2n -3 = 100

⇔ n = 7

Câu hỏi liên quan

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.