Skip to main content

Cho tứ diện S.ABC có đáy ABC là tam giác vuông tại B, SA ⊥ (ABC). AB = a, BC = a, góc giữa cạnh bên SB và mp(ABC) bằng 600. M là trung điểm của cạnh AB. Tính khoảng cách từ B đến (SMC).

Cho tứ diện S.ABC có đáy ABC là tam giác vuông tại B, SA ⊥ (ABC). AB = a

Câu hỏi

Nhận biết

Cho tứ diện S.ABC có đáy ABC là tam giác vuông tại B, SA ⊥ (ABC). AB = a, BC = a, góc giữa cạnh bên SB và mp(ABC) bằng 600. M là trung điểm của cạnh AB. Tính khoảng cách từ B đến (SMC).


A.
Khoảng cách từ B đến mp(SMC): d(B; (SMC) = \frac{a\sqrt{3}}{2}
B.
Khoảng cách từ B đến mp(SMC): d(B; (SMC) = \frac{2a\sqrt{3}}{3}
C.
Khoảng cách từ B đến mp(SMC): d(B; (SMC) = \frac{a\sqrt{3}}{4}
D.
Khoảng cách từ B đến mp(SMC): d(B; (SMC) = \frac{3a\sqrt{3}}{4}
Đáp án đúng: C

Lời giải của Luyện Tập 365

Đặt SA = m, từ B dựng Bz// SA => Bz ⊥ (ABC).

Chọn hệ trục tọa độ như hình vẽ:

Ta có A(-a; 0; 0) B(0; 0; 0) C(0; a; 0) S(-a; 0; m).

Vì M là trung điểm của AB => M\left ( -\frac{a}{2};0;0 \right )

Chọn VTCP(SB) là \overrightarrow{SB}=(a;0;-m)

VTPT(ABC) \vec{n}=(0;0;1)

Theo giả thiết sin600\left | cos(\overrightarrow{SB};\vec{n}) \right |=\frac{|m|}{\sqrt{a^{2}+m^{2}}}

<=>\frac{\sqrt{3}}{2}=\frac{|m|}{\sqrt{a^{2}+m^{2}}} <=> \sqrt{3}.\sqrt{a^{2}+m^{2}} = 2|m|

<=> m2 = 3a2 => m = a√3

Ta được: S(-a; 0; a√3) ; \overrightarrow{SM}=\left ( \frac{a}{2};0;-a\sqrt{3} \right ); \overrightarrow{SC}=\left ( a;a;-a\sqrt{3} \right )

=> \left [ \overrightarrow{SM},\overrightarrow{SC} \right ]=\left ( a^{2}\sqrt{3};-\frac{a^{2}\sqrt{3}}{2};\frac{a^{2}}{2} \right )

Chọn VTCP(SMC) là (2 √3; - √3; 1).

Ta có (SMC):  2√3 x - √3 y + z + a√3 = 0.

Vậy khoảng cách từ B đến mp(SMC) d(B; (SMB) = \frac{a\sqrt{3}}{4}.

Câu hỏi liên quan

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .