Skip to main content

Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác cân ở B, AA'=AC=a, góc giữa đường thẳng BC' và mặt phẳng (ABC) bằng 60o. Gọi P,M lần lượt là trùn điểm của BB', CC', N là điểm thuộc A'C' sao cho NC'=\frac{a}{4}. Tính thể tích khối tứ diện AB'C'B theo a và chứng minh PN⊥A'M

Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác cân ở B, AA'=AC=a, g

Câu hỏi

Nhận biết

Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác cân ở B, AA'=AC=a, góc giữa đường thẳng BC' và mặt phẳng (ABC) bằng 60o. Gọi P,M lần lượt là trùn điểm của BB', CC', N là điểm thuộc A'C' sao cho NC'=\frac{a}{4}. Tính thể tích khối tứ diện AB'C'B theo a và chứng minh PN⊥A'M


A.
VA.B’C’B=\frac{2a^{3}\sqrt{3}}{21} (đvtt)
B.
VA.B’C’B=\frac{a^{3}\sqrt{3}}{36} (đvtt)
C.
VA.B’C’B=\frac{a^{3}\sqrt{3}}{18} (đvtt)
D.
VA.B’C’B=\frac{a^{3}}{36} (đvtt)
Đáp án đúng: B

Lời giải của Luyện Tập 365

Ta có:

VA.B’C’B=VA.BCC’=VC’.CAB=\frac{1}{3}CC’.SABC.

Gọi H, Q là trung điểm AC,B'C'

\widehat{CBC'}=(BC',(ABC))=60o

BC=CC'.cot60o. =\frac{a}{\sqrt{3}} => BH=\sqrt{BC^{2}-CH^{2}}=\frac{a}{2\sqrt{3}}

=> VA.B’C’B=\frac{1}{3}CC’.\frac{1}{2}.BH.AC=\frac{a^{3}}{12\sqrt{3}}\frac{a^{3}\sqrt{3}}{36} (đvtt)

\left\{\begin{matrix} NQ//BH\\PQ//BC' \end{matrix}\right.=> (NPQ)//(C'BH)   (1)

 

A'M⊥BH, A'M⊥C'H => A'M⊥(C'BH)  (2)

Từ (1) (2) suy ra A'M⊥(NPQ) => A'M⊥NP

Câu hỏi liên quan

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.