Skip to main content

Cho lăng trụ ABC.A'B'C' có các cạnh bên là các hình vuông cạnh bằng a. Gọi D,E,F lần lượt là trung điểm các cạnh BC,A'C,B'C. Tính khoảng cách giữa hai đường thẳng DE và A'F theo a.

Cho lăng trụ ABC.A'B'C' có các cạnh bên là các hình vuông cạnh bằng a. G

Câu hỏi

Nhận biết

Cho lăng trụ ABC.A'B'C' có các cạnh bên là các hình vuông cạnh bằng a. Gọi D,E,F lần lượt là trung điểm các cạnh BC,A'C,B'C. Tính khoảng cách giữa hai đường thẳng DE và A'F theo a.


A.
d(DE,A'F) = \frac{a\sqrt{7}}{18}
B.
d(DE,A'F) = \frac{a\sqrt{7}}{19}
C.
d(DE,A'F) = \frac{-a\sqrt{7}}{17}
D.
d(DE,A'F) = \frac{a\sqrt{7}}{17}
Đáp án đúng: D

Lời giải của Luyện Tập 365

Từ giả thiết suy ra đáy của lăng trụ là tam giác đều cạnh a

Gọi K là trung điểm của FC' thì EK song song với A'F và AD,suy ra A,D,K,E đồng phẳng nên khoảng cách từ F đến mp(ADKE) bằng khoảng cách giữa DE và AF

Ta có EK ⊥ (BB'C'C),do đó nếu gọi H là hình chiếu của F lên DK thì FH ⊥ (ADKE),suy ra FH là khoảng cách cần tìm

Trong tam giác vuông DFK có: \frac{1}{FH^{2}}=\frac{1}{FD^{2}}+\frac{1}{FK^{2}}=>FH=\frac{a\sqrt{7}}{17}

Vậy d(DE, A'F) = \frac{a\sqrt{7}}{17}

Câu hỏi liên quan

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.