Skip to main content

Cho hình lăng trụ đứngABC.A’B’C’ có đáy ABC là tam giác cân tại C, cạnh đáy AB bằng 2a và góc \widehat{ABC} = 300. Mặt phẳng (C’AB) tạo với đáy (ABC) một góc 600. Tính thể tích của khối lăng trụ ABC.A’B’C’ và khoảng cách giữa hai đường thẳng AB và CB’.

Cho hình lăng trụ đứngABC.A’B’C’ có đáy ABC là tam giác cân tại C, cạnh đáy AB bằng 2a và

Câu hỏi

Nhận biết

Cho hình lăng trụ đứngABC.A’B’C’ có đáy ABC là tam giác cân tại C, cạnh đáy AB bằng 2a và góc \widehat{ABC} = 300. Mặt phẳng (C’AB) tạo với đáy (ABC) một góc 600. Tính thể tích của khối lăng trụ ABC.A’B’C’ và khoảng cách giữa hai đường thẳng AB và CB’.


A.
V = \frac{2a^{3}}{\sqrt{3}}  và khoảng cách d = \frac{a}{2}
B.
V = \frac{2a^{3}}{\sqrt{3}}  và khoảng cách d = \frac{a}{3}
C.
V = \frac{a^{3}}{\sqrt{3}}  và  khoảng cách d = \frac{a}{3}
D.
V = \frac{a^{3}}{\sqrt{3}}  và khoảng cách d = \frac{a}{2}
Đáp án đúng: D

Lời giải của Luyện Tập 365

Gọi M là trung điểm của AB. Tam giác CAB cân tại C suy ra AB ⊥ CM.

Mặt khác AB ⊥ CC’  

= >AB ⊥ (CMC’) => góc CMC’ = 600.

Gọi V là thể tích lăng trụ ABC.A’B’C’  thì  V = CC'.SABC

Ta có CM = BM.tan300\frac{a}{\sqrt{3}} 

=> SABC \frac{1}{2} CM.AB = \frac{a^{2}}{\sqrt{3}}

CC' = CM.tan600 = \frac{a}{\sqrt{3}}.√3 = a 

=> V = \frac{a^{2}}{\sqrt{3}}.a = \frac{a^{3}}{\sqrt{3}} 

Mặt phẳng (CA’B’) chứa CB’ và song song AB nên

d(AB,CB) = d(AB;(CA’B’)) = d(M;(CA’B’)) = MH , với N là trung điểm của A’B’ và H là hình chiếu của M trên CN.

Do MH ⊥ CN, MH ⊥ A’B’ => MH ⊥ (CA’B’)

Tam giác CMN vuông tại M nên

\frac{1}e_M{H^2} = \frac{1}e_M{C^2} + \frac{1}e_M{N^2} = \frac{4}e_{a^2} => d(AB.CB’) = MH = \frac{a}{2}

Câu hỏi liên quan

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D.