Skip to main content

Cho hình hộp đứng ABCD.A’BC’D’ có đáy là hình vuông, tam giác A’AC vuông cân, A’C = a. Tính thể tích của khối tứ diện ABB’C’ và khoảng cách từ điểm A đến mặt phẳng (BCD’) theo a.

Cho hình hộp đứng ABCD.A’BC’D’ có đáy là hình vuông, tam giác A’AC vuông cân, A’C =

Câu hỏi

Nhận biết

Cho hình hộp đứng ABCD.A’BC’D’ có đáy là hình vuông, tam giác A’AC vuông cân, A’C = a. Tính thể tích của khối tứ diện ABB’C’ và khoảng cách từ điểm A đến mặt phẳng (BCD’) theo a.


A.
VABB’C’ = frac{5a^{3}sqrt{2}}{48}; d(A,(BCD’)) = frac{asqrt{6}}{6}.
B.
VABB’C’ = frac{a^{3}sqrt{2}}{48}; d(A,(BCD’)) = frac{5asqrt{6}}{6}.
C.
VABB’C’ = frac{a^{3}sqrt{3}}{48}; d(A,(BCD’)) = frac{asqrt{6}}{6}.
D.
VABB’C’ = frac{a^{3}sqrt{2}}{48}; d(A,(BCD’)) = frac{asqrt{6}}{6}.
Đáp án đúng: D

Lời giải của Luyện Tập 365

Tam giác A’AC vuông cân tại A và A’C = a nên A’A = AC = frac{a}{sqrt{2}} .Do đó AB = B’C’ = frac{a}{2}.

VABB’C’ = frac{1}{3}B’C’.S∆ABB’ = frac{1}{6}B’C’.AB.BB’ = frac{a^{3}sqrt{2}}{48}

Gọi H là chân đường cao kẻ từ A của ∆A’AB.

Ta có AH⊥ A’B và AH ⊥ BC nên AH ⊥ (A’BC), nghĩa là AH ⊥(BCD’).

Do đó AH = d(A, (BCD’)).

Ta có frac{1}{AH^{2}}frac{1}{AB^{2}} + frac{1}{AA'^{2}} = frac{6}{a^{2}}.

Do đó d(A,(BCD’)) = AH = frac{asqrt{6}}{6}.

 

Câu hỏi liên quan

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1