Skip to main content

Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB = a√3, AD = a. Cạnh bên SC tạo với đáy một góc α thỏa mãn cosα  = \frac{2}{\sqrt{7}}. Gọi M, N lần lượt là trung điểm của SD và SB. Biết rằng hai mặt phẳng (SAB) và (SAD) cùng vuông góc với đáy. Tính thể tích khối chóp C. AMN và khoảng cách giữa hai đường thẳng AM và BD

Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB = a√3, AD = a. Cạnh bên

Câu hỏi

Nhận biết

Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB = a√3, AD = a. Cạnh bên SC tạo với đáy một góc α thỏa mãn cosα  = \frac{2}{\sqrt{7}}. Gọi M, N lần lượt là trung điểm của SD và SB. Biết rằng hai mặt phẳng (SAB) và (SAD) cùng vuông góc với đáy. Tính thể tích khối chóp C. AMN và khoảng cách giữa hai đường thẳng AM và BD


A.
VC.AMN = a3. d(AM , BD) = \frac{a\sqrt{6}}{2}
B.
VC.AMN = \frac{a^{3}}{4} d(AM , BD) = \frac{a\sqrt{6}}{2}
C.
VC.AMN = \frac{a^{3}}{4} d(AM , BD) = \frac{a\sqrt{15}}{5}
D.
VC.AMN = a3. d(AM , BD) = \frac{a\sqrt{15}}{5}
Đáp án đúng: C

Lời giải của Luyện Tập 365

 

Vì hai mặt phẳng (SAB) và (SAD) cùng vuông góc với đáy nên SA ⊥ (ABCD).

Từ đó suy ra (\widehat{SC,(ABCD)}) = \widehat{SCA} = α.

Ta có AC = \sqrt{AB^{2}+BC^{2}} = \sqrt{3a^{2}+a^{2}} = 2a.

Trong tam giác vuông SAC có SC = \dpi{100} \small \frac{AC}{cos\alpha } = \dpi{100} \small \frac{2a}{2} = a√7

Trong tam giác vuông SAC ta có SA = \sqrt{SC^{2}-AC^{2}} = \sqrt{7a^{2}-4a^{2}}

= a√3.

Từ đó suy ra

VS.ABCD\frac{1}{3}.a√3.a√3.a = a3.

Ta có VC.AMN = VS.ABCD – VS.CMN – VN.ABC – VM.ACD – VS.AMN

= VS.ABCD (1 - \frac{1}{8} - \frac{1}{4} - \frac{1}{4} - \frac{1}{8})

\frac{1}{4} VS.ABCD = \frac{a^{3}}{4} (đvtt)

Tam giác AMN có AN = MN = a, AN = \frac{a\sqrt{6}}{2}

Nên có diện tích bằng \frac{a^{2}\sqrt{15}}{8}.

Suy ra d(C , (AMN)) = \frac{3V_{C.AMN}}{S_{AMN}} = \frac{\frac{3a^{3}}{4}}{\frac{a^{2}\sqrt{15}}{8}} = \frac{2a\sqrt{15}}{5}

Gọi O là giao điểm của AC và BD. Ta có:

d(AM , BD) = d(BD , (AMN)) = d(O , (AMN)) = \frac{1}{2}d(C , (AMN)) = \frac{a\sqrt{15}}{5}

Câu hỏi liên quan

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.