Skip to main content

Cho hình chóp S.ABCD có đáy là hình bình hành với AB = 2a, BC = a√2, BD = a√6. Hình chiếu vuông góc của S lên mặt phẳng (ABCD) là trọng tâm G của tam giác BCD . Biết SG = 2a. Tính thể tích của khối chóp S.ABCD và khoảng cách từ điểm A đến mặt phẳng (SBD) theo a.

Cho hình chóp S.ABCD có đáy là hình bình hành với AB = 2a, BC = a√2,
BD = a√

Câu hỏi

Nhận biết

Cho hình chóp S.ABCD có đáy là hình bình hành với AB = 2a, BC = a√2,

BD = a√6. Hình chiếu vuông góc của S lên mặt phẳng (ABCD) là trọng tâm G của tam giác BCD . Biết SG = 2a. Tính thể tích của khối chóp S.ABCD và khoảng cách từ điểm A đến mặt phẳng (SBD) theo a.


A.
V = \frac{4\sqrt{2}a^{3}}{3} , d(A, (SBD)) = \frac{3a}{\sqrt{7}}
B.
V = \frac{4\sqrt{3}a^{3}}{3} , d(A, (SBD)) = \frac{3a}{\sqrt{7}}
C.
V = \frac{4\sqrt{2}a^{3}}{3} , d(A, (SBD)) = \frac{3a}{\sqrt{5}}
D.
V = \frac{4\sqrt{2}a^{3}}{3} , d(A, (SBD)) = \frac{6a}{\sqrt{7}}
Đáp án đúng: A

Lời giải của Luyện Tập 365

Ta có AB+ AD= BD2 nên tam giác ABD vuông tại A

Diện tích đáy ABCD: S = AB.AD = 2√2a2.

Thể tích khối chóp S.ABCD

V = \frac{1}{3}S.SG = \frac{1}{3}2√2a2.2a = \frac{4\sqrt{2}a^{3}}{3}

Kẻ GI BD (I ∈ BD) , kẻ GH SI (∈ SI). 

Ta có BD SG BD ⊥ (SGI) ⇒ BD GH GH ⊥ (SBD)

 d(A, (SBD)) = d(C, (SBD)) = 3d(G,(SBD)) = 3GH

Kẻ CM BD (∈ BD). Ta có

\frac{1}{CM^{2}}=\frac{1}{CB^{2}}+\frac{1}{CD^{2}} => CM = \frac{2a}{\sqrt{3}} => GI = \frac{1}{3}CM = \frac{2a}{3\sqrt{3}}

\frac{1}{GH^{2}}=\frac{1}{GI^{2}}+\frac{1}{GS^{2}} => GH = \frac{a}{\sqrt{7}} => d( A, (SBD)) = \frac{3a}{\sqrt{7}}

Câu hỏi liên quan

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.