Skip to main content

Cho hình chóp S.ABCD có đáy hình vuông cạnh 2a, các cạnh bên SA = a, SB = a√3 và mặt phẳng (SAB) ⊥ (ABCD). Gọi M, N theo thứ tự là trung điểm của các cạnh AB, BC. Tính thể tích của khối chóp S.ABCD và tính khoảng cách giữa 2 đường thẳng SM và DN theo a.

Cho hình chóp S.ABCD có đáy hình vuông cạnh 2a, các cạnh bên SA = a, SB = a√3 và mặt phẳng

Câu hỏi

Nhận biết

Cho hình chóp S.ABCD có đáy hình vuông cạnh 2a, các cạnh bên SA = a, SB = a√3 và mặt phẳng (SAB) ⊥ (ABCD). Gọi M, N theo thứ tự là trung điểm của các cạnh AB, BC. Tính thể tích của khối chóp S.ABCD và tính khoảng cách giữa 2 đường thẳng SM và DN theo a.


A.
VS.ABCD = \frac{2\sqrt{3}a^3}{5}; d(SM; ND) = \frac{3\sqrt{3}a}{3}
B.
VS.ABCD = \frac{2\sqrt{2}a^3}{3}; d(SM; DN) = \frac{3\sqrt{3}a}{2}
C.
VS.ABCD = \frac{3\sqrt{2}a^3}{2} ; d(SM; DN) = \frac{3\sqrt{3}a}{42}
D.
VS.ABCD = \frac{2\sqrt{3}a^3}{3},  d(SM; ND) = \frac{3\sqrt{3}a}{4}
Đáp án đúng: D

Lời giải của Luyện Tập 365

Chọn hệ trục tọa độ Oxyz, sao cho A(0; 0; 0), B(2a; 0; 0), D(0; 2a; 0) và

S(\frac{a}{2}; 0; \frac{a\sqrt{3}}{2})

Thể tích khối chóp S.ABCD là:

VS.ABCD\frac{1}{3}. SH . dt(ABCD) = \frac{1}{3}\frac{a\sqrt{3}}{2}. 4a2 = \frac{2\sqrt{3}a^3}{3}

Dùng phương pháp tọa độ tính được khoảng cách SM và ND là

d(SM; ND) = \frac{3\sqrt{3}a}{4} .

Câu hỏi liên quan

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}