Skip to main content

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I với AB = 2a√3 , BC = 2a. Biết chân đường cao H hạ từ đỉnh S xuống đáy ABCD trùng với trung điểm DI và SB hợp với đáy ABCD một góc 600 . Tính thể tích khối chóp S.ABCD và khoảng cách từ H đến (SBC). 

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I với AB = 2a√3 , BC = 2a. Bi

Câu hỏi

Nhận biết

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I với AB = 2a√3 , BC = 2a. Biết chân đường cao H hạ từ đỉnh S xuống đáy ABCD trùng với trung điểm DI và SB hợp với đáy ABCD một góc 600 . Tính thể tích khối chóp S.ABCD và khoảng cách từ H đến (SBC). 


A.
 d(H, (SBC))=\frac{3}{5}a\sqrt{35}
B.
 d(H, (SBC))=\frac{4}{5}a\sqrt{15}
C.
 d(H, (SBC))=\frac{6}{5}a\sqrt{15}
D.
 d(H, (SBC))=\frac{3}{5}a\sqrt{15}
Đáp án đúng: D

Lời giải của Luyện Tập 365

 

- Tính thể tích khối chóp

Xác định đúng góc \widehat{SBH}=60^{0}

V_{S.ABCD}=\frac{1}{3}S_{ABCD}.SH=\frac{1}{3}.AB.BCSH=\frac{1}{3}2a\sqrt{3}.2a.3a\sqrt{3}=12a^{3}

- Khoảng cách d( H, (SBC))

Xác định d(H, (SBC))=HK

\frac{1}{HK^{2}}=\frac{1}{SH^{2}}+\frac{1}{HM^{2}}=\frac{1}{27a^{2}}+\frac{4}{27a^{2}}=\frac{5}{27a^{2}}

 d(H, (SBC))=HK=\frac{3}{5}a\sqrt{15}

Câu hỏi liên quan

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.