Skip to main content

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A. Có SA = AB = a√3 , cạnh bên SA vuông góc với mặt phẳng đáy, góc giữa đường thẳng SC và mặt phẳng (ABC) bằng 60o. 1. Tính thể tích khối chóp S.ABC. 2. Trong tam giác SAC vẽ phân giác góc A cắt cạnh SC tại D. Tính khoảng cách giữa hai đường thẳng AC và BD.

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A. Có SA = AB = a√3 , cạnh bên SA vuông

Câu hỏi

Nhận biết

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A. Có SA = AB = a√3 , cạnh bên SA vuông góc với mặt phẳng đáy, góc giữa đường thẳng SC và mặt phẳng (ABC) bằng 60o.

1. Tính thể tích khối chóp S.ABC.

2. Trong tam giác SAC vẽ phân giác góc A cắt cạnh SC tại D. Tính khoảng cách giữa hai đường thẳng AC và BD.


A.
VS.ABC = \frac{a^{3}}{2} ; d(AC, BD) = a\sqrt{\frac{3-\sqrt{2}}{5-2\sqrt{2}}}
B.
VS.ABC = \frac{2a^{3}}{3} ; d(AC, BD) = a\sqrt{\frac{3-\sqrt{3}}{5-2\sqrt{3}}}
C.
VS.ABC = \frac{a^{3}}{3} ; d(AC, BD) = a\sqrt{\frac{3-\sqrt{3}}{5-2\sqrt{3}}}
D.
  VS.ABC = \frac{a^{3}}{2} ; d(AC, BD) = a\sqrt{\frac{3-\sqrt{3}}{5-2\sqrt{3}}}
Đáp án đúng: D

Lời giải của Luyện Tập 365

1. SA = AB = a√3; góc SCA = 60o  

=> AC = a

SABC\frac{1}{2}a.a√3 = \frac{a^{2}\sqrt{3}}{2}

VS.ABC\frac{1}{3}.\frac{a^{2}\sqrt{3}}{2}.a√3 = \frac{a^{3}}{2}

2. Kẻ DH //AC (H ε SA)

Kẻ AK ⊥ BH (K ε BH)

Suy ra AC // (BDH)

D(AC, BD) = d(A, (BDH)) = AK

Ta có: \frac{HA}{HS}=\frac{DC}{DS}=\frac{AC}{AS}. Tính được HA = \frac{a(3-\sqrt{3})}{2}

\frac{1}{AH^{2}}+\frac{1}{AB^{2}}=\frac{1}{AK^{2}}\Rightarrow \frac{4}{a^{2}(3-\sqrt{3})}+\frac{1}{3a^{2}}=\frac{1}{AK^{2}}

=> AK2\frac{3a^{2}(3-\sqrt{3})}{15-6\sqrt{3}}  <=> AK = a\sqrt{\frac{3-\sqrt{3}}{5-2\sqrt{3}}}

Câu hỏi liên quan

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.