Skip to main content

Cho các số thực không âm x, y thỏa mãn x2 + y2 + (3x − 2)(y −1) = 0. Tìm giá trị lớn nhất của biểu thức P = x2 + y2 + x+ y+8\sqrt{4-x-y}

Cho các số thực không âm x, y thỏa mãn x2 + y2 + (3x − 2)(y −1) = 0.
Tìm giá trị lớn nhất

Câu hỏi

Nhận biết

Cho các số thực không âm x, y thỏa mãn x2 + y2 + (3x − 2)(y −1) = 0.

Tìm giá trị lớn nhất của biểu thức P = x2 + y2 + x+ y+8\sqrt{4-x-y}


A.
MaxP = 6+8√2
B.
MaxP = 6-8√2
C.
MaxP = 5+8√2
D.
MaxP = 5- 8√2
Đáp án đúng: A

Lời giải của Luyện Tập 365

Ta có giả thiết x2 + y2 + (3x -2)(y-1) = 0 <= > (x+y)2 – 3(x+y) + 2 = -xy – y

Vì x, y không âm nên –xy – y ≤ 0. Suy ra (x+y)2 – 3(x+y) + 2 ≤ 0 <= > 1<x+y ≤2

Đặt t = x+y, khi đó t ∊ [1;2]

Ta có P = x2 + y2 + x +y + 8\sqrt{4-x-y} ≤ (x+y)2 + (x+y) + 8\sqrt{4-x-y} = t2 + t + 8\sqrt{4-t}

Xét hàm số f(t) = t2 + t + 8 với t ∊ [1;2]

Ta có f’(t) = 2t +1 -\frac{4}{\sqrt{4-t}} , với mọi t ∊ [1;2]

Chú ý rằng f’(t) > 3 -\frac{4}{\sqrt{2}} > 0  với mọi t ∊ (1;2)

Suy ra f(t) đồng biến trên [1;2]. Do đó maxf(t) = f(2) = 6+8√2

Suy ra P ≤ 6+8√2, dấu đẳng thức xảy ra khi \left\{\begin{matrix} xy=0\\ t=2 \end{matrix}\right.. <= > x=2, y=0

Vậy giá trị lớn nhất của P là 6+8√2, đạt khi x=2, y=0

 

Câu hỏi liên quan

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.