Skip to main content

Cho các số thực dương a, b, c thỏa mãn điều kiện  a + b + c = 3. Chứng minh rằng: \frace_a\left( {a + c - 2b} \right)e_ab + 1 + \frace_b\left( {b + a - 2c} \right)e_bc + 1 + \frace_c\left( {c + b - 2a} \right)e_ca + 1  ≥ 0 

Cho các số thực dương a, b, c thỏa mãn điều kiện  a + b + c = 3. Chứng minh rằng:

Câu hỏi

Nhận biết

Cho các số thực dương a, b, c thỏa mãn điều kiện  a + b + c = 3. Chứng minh rằng: \frace_a\left( {a + c - 2b} \right)e_ab + 1 + \frace_b\left( {b + a - 2c} \right)e_bc + 1 + \frace_c\left( {c + b - 2a} \right)e_ca + 1  ≥ 0 


A.
Click vào đáp án để xem 
Đáp án đúng: A

Lời giải của Luyện Tập 365

Bất đẳng thức trên

<=> \frac{a(1-b)}{ab+1} + 1 + \frac{b(1-c)}{bc+1} + 1 + \frac{c(1-a)}{ca+1} + 1 ≥ 3

<=> \frac{a+1}{ab+1}\frac{b+1}{bc+1} + \frac{c+1}{ca+1} ≥ 3 (*)

 

Ta có: VT(*) ≥ 3\sqrt[3]e_\frace_\left( {a + 1} \right)\left( {b + 1} \right)\left( {c + 1} \right)e_\left( {ab + 1} \right)\left( {bc + 1} \right)\left( {ca + 1} \right)

Ta sẽ chứng minh: (a + 1)(b + 1)(c + 1) ≥ (ab + 1)(bc + 1)(ca + 1)

<=> abc + ab + bc + ca + a + b + c + 1

≥ a2b2c2 + abc(a + b + c) + ab + bc + ca + 1

<=> 3 ≥ a2b2c2 + 2abc  (**)

Theo Cosi:  3 = a + b + c ≥ 3\sqrt[3]{abc}  => \sqrt[3]{abc} ≤ 1 => abc  ≤ 1

Vậy (**) đúng => (*) đúng.

Câu hỏi liên quan

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).