Skip to main content

Cho a, b, c là ba số thực dương thỏa mãn abc = 1. Chứng minh rằng: \frac{1}{1+a^{3}+b^{3}} + \frac{1}{1+b^{3}+c^{3}} + \frac{1}{1+c^{3}+a^{3}} ≤ 1

Cho a, b, c là ba số thực dương thỏa mãn abc = 1.
Chứng minh rằng:

Câu hỏi

Nhận biết

Cho a, b, c là ba số thực dương thỏa mãn abc = 1.

Chứng minh rằng: \frac{1}{1+a^{3}+b^{3}} + \frac{1}{1+b^{3}+c^{3}} + \frac{1}{1+c^{3}+a^{3}} ≤ 1


A.
Click để xem đáp án.
Đáp án đúng: A

Lời giải của Luyện Tập 365

Trước hết ta chứng minh:

a+ b+ 1 = a+ b+ abc

= (a + b)(a- ab + b2) + abc ≥ (a + b)ab + abc = ab(a + b + c) > 0  (1)

Từ (1), ta có: \frac{1}{1+a^{3}+b^{3}} ≤ \frac{1}{ab(a+b+c)} = \frac{c}{ab(a+b+c)} = \frac{c}{a+b+c}

Tương tự: \frac{1}{1+b^{3}+c^{3}} ≤ \frac{a}{a+b+c}\frac{1}{1+c^{3}+a^{3}} ≤ \frac{b}{a+b+c}

Suy ra: \frac{1}{1+a^{3}+b^{3}} + \frac{1}{1+b^{3}+c^{3}} + \frac{1}{1+c^{3}+a^{3}} ≤ 1

Dấu "=" xảy ra khi và chỉ khi a = b = c = 1

 

 

Câu hỏi liên quan

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.