Skip to main content

Cho a, b, c ε [1; 2]. Tìm giá trị nhỏ nhất của biểu thức: P = \frac{(a+b)^{2}}{c^{2}+4(ab+bc+ca)}

Cho a, b, c ε [1; 2]. Tìm giá trị nhỏ nhất của biểu thức:
P = 

Câu hỏi

Nhận biết

Cho a, b, c ε [1; 2]. Tìm giá trị nhỏ nhất của biểu thức:

P = \frac{(a+b)^{2}}{c^{2}+4(ab+bc+ca)}


A.
\frac{1}{3}
B.
\frac{1}{4}
C.
\frac{1}{8}
D.
\frac{1}{6}
Đáp án đúng: D

Lời giải của Luyện Tập 365

Ta có 4ab ≤ (a + b)2

Khi đó

P ≥ \frac{(a+b)^{2}}{c^{2}+4(a+b)c+(a+b)^{2}}=\frac{\left ( \frac{a}{c}+\frac{b}{c} \right )^{2}}{1+4\left ( \frac{a}{c}+\frac{b}{c} \right )+\left ( \frac{a}{c}+\frac{b}{c} \right )^{2}}

Đặt t = \frac{a}{c}+\frac{b}{c} => t ε [1; 4] do a, b, c ε [1;2]

Xét f(t) = \frac{t^{2}}{1+4t+t^{2}}, t ε [1; 4] => f'(t) = \frac{4t^{2}+2t}{1+4t+t^{2}} > 0, ∀t ε [1; 4] 

Từ đó MinP = f(1) = <=> c = 2a = 2b = 2

Câu hỏi liên quan

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D.