Skip to main content

Các số thực x, y thay đổi luôn thỏa mãn x + y = 1. Hãy tìm giá trị lớn nhất của biểu thức: M = (x3 + 1)(y3 + 1).

Các số thực x, y thay đổi luôn thỏa mãn x + y = 1. Hãy tìm giá trị lớn n

Câu hỏi

Nhận biết

Các số thực x, y thay đổi luôn thỏa mãn x + y = 1. Hãy tìm giá trị lớn nhất của biểu thức: M = (x3 + 1)(y3 + 1).


A.
max M = 4 khi và chỉ khi (x; y) = (0; 1) hoặc (x; y) = (1; 0)
B.
max M = 4 khi và chỉ khi (x; y)=\left ( \frac{1+\sqrt{5}}{2};\frac{1-\sqrt{5}}{2} \right ) hoặc (x; y)=\left ( \frac{1-\sqrt{5}}{2};\frac{1+\sqrt{5}}{2} \right )
C.
max M = 4 khi và chỉ khi (x; y)=\left ( \frac{1}{2};\frac{1}{2} \right ) 
D.
max M = 5 khi và chỉ khi (x; y)=\left ( \frac{1+\sqrt{5}}{2};\frac{1-\sqrt{5}}{2} \right ) hoặc (x; y)=\left ( \frac{1-\sqrt{5}}{2};\frac{1+\sqrt{5}}{2} \right )
Đáp án đúng: B

Lời giải của Luyện Tập 365

Ta có: M = x3y3 + x3 +y3 + 1 = x3y3 + (x + y)(x2 – xy + y2) + 1

                = x3y3 + (x + y)[(x + y)2 – 3xy] + 1.

Đặt xy = t, do (x + y)2 ≥ 4xy => t ≤ \frac{1}{4} . Đặt f(t) = t3 – 3t + 2, t ≤ \frac{1}{4}.

Ta có: f’(t) =3t2 – 3 = 0 <=> t = -1 (do t ≤ \frac{1}{4}), f(-1) = 4 , \lim_{t\rightarrow -\infty }f(t)= - \inftyLập bảng biến thiên => max M = max f(t) = f(-1) = 4 <=> \left\{\begin{matrix} x+y=1\\xy=-1 \end{matrix}\right.

=>  x, y là hai nghiệm của phương trình: u2 – u – 1 = 0.

Vậy max M = 4 khi và chỉ khi (x; y)=\left ( \frac{1+\sqrt{5}}{2};\frac{1-\sqrt{5}}{2} \right )

 hoặc (x; y)=\left ( \frac{1-\sqrt{5}}{2};\frac{1+\sqrt{5}}{2} \right )

Câu hỏi liên quan

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.