Skip to main content

Trong không gian với hệ tọa độ Oxyz, cho ba mặt phẳng (P): x+3y-z+4=0, (Q): x-2z-3=0, (R): y-2z=0. Gọi d là giao tuyến của hai mặt phẳng (Q) và (R). Viết phương trình đường thẳng ∆ nằm trong (P) và vuông góc với đường thẳng d tại giao điểm của d và (P).

Trong không gian với hệ tọa độ Oxyz, cho ba mặt phẳng (P): x+3y-z+4=0, (

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz, cho ba mặt phẳng (P): x+3y-z+4=0, (Q): x-2z-3=0, (R): y-2z=0. Gọi d là giao tuyến của hai mặt phẳng (Q) và (R). Viết phương trình đường thẳng ∆ nằm trong (P) và vuông góc với đường thẳng d tại giao điểm của d và (P).


A.
∆: \frac{x-1}{-5}=\frac{y+2}{3}=\frac{z+1}{4}
B.
∆: \frac{x-1}{5}=\frac{y+2}{3}=\frac{z+1}{4}
C.
∆: \frac{x-1}{-5}=\frac{y-2}{3}=\frac{z+1}{4}
D.
∆: \frac{x-1}{-5}=\frac{y+2}{3}=\frac{z-1}{4}
Đáp án đúng: A

Lời giải của Luyện Tập 365

Gọi M=d ∩ (P). Khi đó tọa độ điểm M là nghiệm của hệ phương trình

\left\{\begin{matrix}x+3y-z+4=0\\x-2z-3=0\\y-2z=0\end{matrix}\right.\left\{\begin{matrix}x=1\\y=-2\\z=-1\end{matrix}\right. => M(1;-2;-1)

Ta có \overrightarrow{n_{Q}}(1;0;-2), \overrightarrow{n_{R}}(0;1;-2) lần lượt là VTPT của (Q) và (R). Khi đó đường thẳng d có VTCP là \overrightarrow{u_{d}}=\begin{bmatrix}\overrightarrow{n_{Q}},\overrightarrow{n_{R}}\end{bmatrix}=(2;2;1)

Ta có \overrightarrow{n_{P}}(1;3;-1) là VTPT của (P).

Từ đó suy ra đường thẳng ∆ có VTCP là \overrightarrow{u_{\bigtriangleup}}=\begin{bmatrix}\overrightarrow{u_{d}},\overrightarrow{n_{P}}\end{bmatrix}=(-5;3;4)

Vậy ∆: \frac{x-1}{-5}=\frac{y+2}{3}=\frac{z+1}{4}.

Câu hỏi liên quan

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D.