Skip to main content

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d và mặt cầu (S) có phương trình: d: \frac{x-3}{2}=\frac{y-2}{1}=\frac{z-1}{-2}     (S): x2+y2+z2-2x+2y-4z -19=0 Tìm điểm M thuộc đường thẳng d sao cho mặt phẳng qua M và vuông góc với đường thẳng d cắt mặt cầu (S) theo một đường tròn có chu vi bằng 8π.

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d và mặt cầu (S) có

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d và mặt cầu (S) có phương trình: d: \frac{x-3}{2}=\frac{y-2}{1}=\frac{z-1}{-2}     (S): x2+y2+z2-2x+2y-4z -19=0 Tìm điểm M thuộc đường thẳng d sao cho mặt phẳng qua M và vuông góc với đường thẳng d cắt mặt cầu (S) theo một đường tròn có chu vi bằng 8π.


A.
M(3;2;1) và M(-1;0;5)
B.
M(3;2;2) và M(1;1;0)
C.
M(2;4;5) và M(3;3;1)
D.
M(2;1;1) và M(2;3;4)
Đáp án đúng: A

Lời giải của Luyện Tập 365

Mặt cầu (S) có tâm I(1;-1;2), bán kính R=5. Từ giả thiết suy ra mặt phẳng đi qua M cắt mặt cầu (S) theo một đường tròn có bán kính r=4. 

Đường thẳng d có VTCP \vec{U_{d}} (2;1;-2). Vì M ∈ d => M(3+2t; 2+t; 1-2t).

Khi đó mặt phẳng (P) đi qua M vuông góc với d có phương trình 

(P): 2(x-3-2t)+(y-2-t)-2(z-1+2t)=0 <=> 2x+y-2z-9t-6=0.

Ta có d(I,(P))= \sqrt{R^{2}-r^{^{2}}} <=> \frac{|9t+9|}{3} = 3 <=> \begin{bmatrix} t=0\\t=-2 \end{bmatrix}

Từ đó suy ra M(3;2;1) và M(-1;0;5).

Câu hỏi liên quan

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}