Skip to main content

Cho lăng trụ tam giác đều ABCA’B’C’ có cạnh đáy bằng a. Gọi M, N lần lượt là trung điểm của đoạn thẳng AA’, AB. Biết góc giữa hai mặt phẳng (C’AI) và (ABC) bằng 600. Tính theo a thể tích khối chóp NAC’I và khoảng cách giữa hai đường thẳng MN, AC’.

Cho lăng trụ tam giác đều ABCA’B’C’ có cạnh đáy bằng a. Gọi M, N lần lượ

Câu hỏi

Nhận biết

Cho lăng trụ tam giác đều ABCA’B’C’ có cạnh đáy bằng a. Gọi M, N lần lượt là trung điểm của đoạn thẳng AA’, AB. Biết góc giữa hai mặt phẳng (C’AI) và (ABC) bằng 600. Tính theo a thể tích khối chóp NAC’I và khoảng cách giữa hai đường thẳng MN, AC’.


A.
VN.AC’I = \frac{a^{3}}{32}; d(MN,AC’) = \frac{a\sqrt{3}}{5}.
B.
VN.AC’I = \frac{a^{3}}{32} ; d(MN,AC’) = \frac{a\sqrt{3}}{6}.
C.
VN.AC’I = \frac{a^{3}}{32}; d(MN,AC’) =\frac{a\sqrt{3}}{7}.
D.
VN.AC’I = \frac{a^{3}}{32}; d(MN,AC’) = \frac{a\sqrt{3}}{8}.
Đáp án đúng: D

Lời giải của Luyện Tập 365

CC’⊥(ABC), CI⊥AI =>C’I⊥AI=>góc C’IC = 600 =>CC’ = CItan600 = a\frac{\sqrt{3}}{2}

VN.AC’I = VC’.ANI = \frac{1}{4}VC’.ABC = \frac{1}{12}CC’.SABC\frac{a^{3}}{32}

Gọi O là giao điểm của A’C và AC’

Khi đó \left\{\begin{matrix}MO//AC\\MO=\frac{1}{2}AC\end{matrix}\right. và \left\{\begin{matrix}NI//AC\\NI=\frac{1}{2}AC\end{matrix}\right. suy ra NI//MO, NI = MO

Suy ra MOIN là hình bình hành  =>MN//OI=>MN//(AC’I)=>d(MN,AC’) = d(MN,(AC’I)) = d(N,(AC’I)) = h

VN.AC’I = \frac{a^{3}}{32}, SAIC’\frac{S_{AIC}}{cos60^{0}} = \frac{\frac{a^{2}\sqrt{3}}{8}}{\frac{1}{2}} = \frac{a^{2}\sqrt{3}}{4} =>h = \frac{3V_{N.AC'I}}{S_{AIC'}}\frac{a\sqrt{3}}{8}

 

Câu hỏi liên quan

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).