Skip to main content

Giải bất phương trình: \sqrt{x+2} + x2 – x – 2 ≤ \sqrt{3x-2} (x ∈ \mathbb{R})

Giải bất phương trình:

Câu hỏi

Nhận biết

Giải bất phương trình:
\sqrt{x+2} + x2 – x – 2 ≤ \sqrt{3x-2} (x ∈ \mathbb{R})


A.
x ∈ [-\frac{2}{3} ; +∞]
B.
x ∈ [\frac{2}{3} ; +∞]
C.
x ∈ [-\frac{2}{3} ; 2]
D.
x ∈ [\frac{2}{3} ; 2]
Đáp án đúng: D

Lời giải của Luyện Tập 365

Điều kiện: x ∈ [\frac{2}{3} ; +∞]

(1) ⇔ (\sqrt{x+2} - \sqrt{3x-2}) + ( x2 – x – 2 ) ≤ 0

⇔ (x - 2)(\frac{-2}{\sqrt{x+2}+\sqrt{3x-2}} + x + 1) ≤ 0     (2)

Đặt f(x) = \frac{-2}{\sqrt{x+2}+\sqrt{3x-2}} + x + 1 (x ≥ \frac{2}{3}) là hàm đồng biến trên [\frac{2}{3} ; +∞)

Suy ra f(x) ≥ f(\frac{2}{3}) = \frac{5}{3} - \sqrt{\frac{3}{2}} > 0. Vậy (2) ⇔ x ∈ [\frac{2}{3} ; 2]

Câu hỏi liên quan

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.