Skip to main content

Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): x+y-2z+4=0 và mặt cầu (S): x2+y2+z2-2x+4y+2z-3=0. Viết phương trình đường thẳng d tiếp xúc với mặt cầu (S) tại A(3;-1;1) và song song với mặt phẳng (P).

Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): x+y-2z+4=0

Câu hỏi

Nhận biết

Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): x+y-2z+4=0 và mặt cầu (S): x2+y2+z2-2x+4y+2z-3=0. Viết phương trình đường thẳng d tiếp xúc với mặt cầu (S) tại A(3;-1;1) và song song với mặt phẳng (P).


A.
∆: -\frac{x-3}{-4}=\frac{y+1}{6}=\frac{z-1}{1}
B.
∆: \frac{x-3}{-4}=\frac{y+1}{6}=\frac{z-1}{1}
C.
∆: \frac{x-3}{-4}=-\frac{y+1}{6}=\frac{z-1}{1}
D.
∆: \frac{x-3}{-4}=\frac{y+1}{6}=-\frac{z-1}{1}
Đáp án đúng: B

Lời giải của Luyện Tập 365

Mặt phẳng (P) có VTPT là \overrightarrow{n_{P}}(1;1;-2), mặt cầu (S) có tâm I(1;-2;-1)

Từ giả thiết ta có \left\{\begin{matrix}\overrightarrow{IA(2;1;2)}\\\overrightarrow{n_{P}}(1;1;-2)\end{matrix}\right. vuông góc với d

Nên VTCP của đường thẳng d là : \overrightarrow{u_{d}}=\left[\overrightarrow{IA},\overrightarrow{n_{P}}\right]=(-4;6;1)

Từ đó suy ra ∆:\frac{x-3}{-4}=\frac{y+1}{6}=\frac{z-1}{1}

Câu hỏi liên quan

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.