Skip to main content

Trong không gian với hệ tọa độ vuông góc với Oxyz, cho hình chóp tứ giác đều S.ABCD, biết S(3; 2; 4); A(1; 2; 3); C(3; 0; 3). Gọi M là trung điểm của AC và N là trực tâm tam giác SAB. Tính độ dài đoạn MN.

Trong không gian với hệ tọa độ vuông góc với Oxyz, cho hình chóp tứ giác

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ vuông góc với Oxyz, cho hình chóp tứ giác đều S.ABCD, biết S(3; 2; 4); A(1; 2; 3); C(3; 0; 3). Gọi M là trung điểm của AC và N là trực tâm tam giác SAB. Tính độ dài đoạn MN.


A.
MN=\frac{1}{\sqrt{3}}
B.
MN=\frac{\sqrt{2}}{3}
C.
MN=\frac{\sqrt{3}}{4}
D.
MN=\frac{\sqrt{3}}{2}
Đáp án đúng: D

Lời giải của Luyện Tập 365

Gọi H là trung điểm của AB, thì N ∈ SH.

Do AB ⊥ (SHM) nên AB ⊥ MN.

Mặt khác AM ⊥ (SBD) => AM ⊥ SB.

Do N là trực tâm ∆SAB nên ta có AN ⊥ SB => SB ⊥ MN.

Do đó MN ⊥ (SAB) hay MN ⊥ SH. Vậy MN là khoảng cách từ M đến mặt bên SAB hay MN là đường cao trong tam giác vuông SMH.

=>\frac{1}{MN^{2}}=\frac{1}{MH^{2}}+\frac{1}{MS^{2}}  (*)

Ta có:

 \overrightarrow{MS}(1;1;1)=>MS=\sqrt{3}

         \overrightarrow{AC}(2; -2; 0) => AC = √8 => AM = √2 => MH = 1.

Vậy từ (*) => MN=\frac{\sqrt{3}}{2}

Câu hỏi liên quan

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)