Skip to main content

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): x2 + y2 + z2 −2y + 2z −2 = 0 và hai điểm A(0;2;1),B(2;2;0). Viết phương trình mặt phẳng (P) đi qua hai điểm A, B và tiếp xúc với mặt cầu (S). 

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): x2 + y2 + z2 −2y + 2z −2 = 0 và hai

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): x2 + y2 + z2 −2y + 2z −2 = 0 và hai điểm A(0;2;1),B(2;2;0). Viết phương trình mặt phẳng (P) đi qua hai điểm A, B và tiếp xúc với mặt cầu (S). 


A.
(P):3x+ 2y +6z −10 = 0
B.
(P): x + 2y + 2z −6 = 0 .
C.
(P):3x+ 5y +6z −10 = 0
D.
cả A và B
Đáp án đúng: D

Lời giải của Luyện Tập 365

Gọi \overrightarrow{n} =(a;b;c)≠ 0 là vectơ pháp tuyến của (P). Ta có \overrightarrow{AB} =(2;0;−1).

A, B thuộc (P) nên \overrightarrow{AB}.\overrightarrow{n} = 0 ⇔ 2a c = 0 ⇔ c = 2a

Phương trình của (P): ax +b( y −2)+ 2a(z −1)= 0.  

(S) có tâm T (0;1;−1) và bán kính R = 2 

(P) tiếp xúc (S)⇔ d (T,(P))= R ⇔ \frac{\left | -b-4a \right |}{\sqrt{5a^{2}+b^{2}}} = 2 ⇔ 4a2 – 8ab + 3b2 = 0 <=> a = \frac{b}{2} hoặc  a= \frac{3b}{2}

a = \frac{b}{2}, chọn a =1;b = 2 ta được (P): x + 2(y −2)+ 2(z −1)= 0 hay (P): x + 2y + 2z −6 = 0 .

a = \frac{3b}{2}, chọn a = 3;b = 2 ta được (P):3x+ 2( y −2)+6(z −1)= 0 hay (P):3x+ 2y +6z −10 = 0

Câu hỏi liên quan

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .