Skip to main content

Cho lăng trụ đứng ABCD.A'B'C'D' có đáy là hình thoi cạnh a, \widehat{BAD} =60^{\circ}. Gọi M là trung điểm cạnh AA', N là trug điểm cạnh CC'. Chứng minh bốn điểm B', M, D, N cùng thuộc 1 mặt phẳng. Hãy tính độ dài cạnh AA' theo a để tứ giác B'MDN LÀ HÌNH VUÔNG.

Cho lăng trụ đứng ABCD.A'B'C'D' có đáy là hình thoi cạnh a,

Câu hỏi

Nhận biết

Cho lăng trụ đứng ABCD.A'B'C'D' có đáy là hình thoi cạnh a, \widehat{BAD} =60^{\circ}. Gọi M là trung điểm cạnh AA', N là trug điểm cạnh CC'. Chứng minh bốn điểm B', M, D, N cùng thuộc 1 mặt phẳng. Hãy tính độ dài cạnh AA' theo a để tứ giác B'MDN LÀ HÌNH VUÔNG.


A.
AA' = 2a\sqrt{2}.
B.
AA' = \frac{a\sqrt{2}}{2}.
C.
AA' = a\sqrt{3}
D.
AA' = a\sqrt{2}.
Đáp án đúng: D

Lời giải của Luyện Tập 365

 

Chứng minh B', M, D, N  cùng thuộc một mặt phẳng:

Ta có AMC'N, ABC'D' là các hình bình hành nên MN, AC' và BD' cắt nhau tại trung điểm mỗi đường.

Do BD' và MN cắt nhau tại trung điểm mỗi đường nên B'MDN là hình bình hành. Vậy B', M, D, N cùng thuộc một mặt phẳng.

Tính AA'. Đặt AA' = 2x. Ta có:

MB = \sqrt{MA^{2}+AB^{2}} = \sqrt{x^{2}+a^{2}}

BN = \sqrt{BC^{2}+CN^{2}} = \sqrt{a^{2}+x^{2}}

Suy ra MB = BN hay B'MDN là hình thoi. Để B'MDN là hình vuông thì điều kiện cần và đủ là tam giác BMN vuông tại B hay MN2 = MB2 + BN2     (1).

Ta có AMNC là hình bình hành nên: MN = AC = \sqrt{3}a

Do đó: (1) <=> 3a2 = 2(a2 + x2) <=> x = \frac{a}{\sqrt{2}}. Vậy AA' = 2x =a. \sqrt{2}

Câu hỏi liên quan

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.