Skip to main content

Trong mặt phẳng Oxy cho tam giác ABC có trung điểm cạnh BC là M(-1;0) . Trọng tâm và tâm đường tròn ngoại tiếp tam giác ABC lần lượt là G( \frac{4}{3};\frac{4}{3}) và I(1;4) . Xác định tọa độ các đỉnh của tam giác ABC.

Trong mặt phẳng Oxy cho tam giác ABC có trung điểm cạnh BC là M(-1;0) . Trọng tâm và tâm

Câu hỏi

Nhận biết

Trong mặt phẳng Oxy cho tam giác ABC có trung điểm cạnh BC là M(-1;0) . Trọng tâm và tâm đường tròn ngoại tiếp tam giác ABC lần lượt là G( \frac{4}{3};\frac{4}{3}) và I(1;4) . Xác định tọa độ các đỉnh của tam giác ABC.


A.
A(6;1); B(1;-1); C(-3;1)
B.
A(6;4); B(1;-1); C(-3;1)
C.
 A(6;4); B(-3;1);C(1;-1)
D.
Cả B và C
Đáp án đúng: D

Lời giải của Luyện Tập 365

Ta có \overrightarrow{AM} = 3.\overrightarrow{GM} ; \overrightarrow{GM} = (-\frac{7}{3} ; -\frac{4}{3}) => \overrightarrow{AM} =(-7;-4) => A(6;4)

Đường thẳng BC đi qua điểm M nhận \overrightarrow{MI} = (2;4) làm vtpt suy ra 

BC: x+2y+1=0 => B(-1-2yo; yo)

Ta có IB = IA (-2 - 2yo)2 +(yo -4)2=25 yo2 – 1 = 0 yo = 1 v yo = -1

Với yo = 1 => B(-3;1). Do M(-1;0) là trung điểm BC suy ra C(1;-1)

Với yo = -1 => B(1;-1). Do M(-1;0) là trung điểm Bc suy ra C(-3;1)

Câu hỏi liên quan

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.