Skip to main content

Cho các số thực không âm x,y,z thoả mãn xz +yz +1 = xy. Tìm giá trị lớn nhất của biểu thức : P = \frac{2x}{x^{2}+1}+\frac{2y}{y^{2}+1}+\frac{z^{2}-1}{z^{2}+1}

Cho các số thực không âm x,y,z thoả mãn xz +yz +1 = xy. Tìm giá trị lớn nhất của biểu thức

Câu hỏi

Nhận biết

Cho các số thực không âm x,y,z thoả mãn xz +yz +1 = xy. Tìm giá trị lớn nhất của biểu thức :

P = \frac{2x}{x^{2}+1}+\frac{2y}{y^{2}+1}+\frac{z^{2}-1}{z^{2}+1}


A.
maxP = -1
B.
 maxP = \frac{3}{2}
C.
maxP = 1
D.
maxP = -\frac{3}{2}
Đáp án đúng: B

Lời giải của Luyện Tập 365

Đặt a= \frac{1}{x}; b = \frac{1}{y} ; c = z => ab + bc + ca = 1

1+a2 = (a+b)(a+c); 1+b2 = (a+b)(b+c); 1+c2 (a+c)(b+c)

 \frac{a}{1+a^{2}}+\frac{b}{1+b^{2}}=\frac{a}{(a+b)(a+c)}+\frac{b}{(a+b)(b+c)}=\frac{1+ab}{(a+b)(b+c)(c+a)}

\frac{1+ab}{\sqrt{(1+a^{2})(1+b^{2})}\sqrt{1+c^{2}}}\leq \frac{1}{\sqrt{1+c^{2}}}

Ta có P ≤ \frac{2}{1+c^{2}}+\frac{c^{2}-1}{c^{2}+1} = f(c)

=> f'(c) = \frac{-2c(\sqrt{1+c^{2}}-2)}{(1+c^{2})^{2}}

Vậy maxP = maxf(c) = f(√3) = \frac{3}{2} đạt được khi x = y =2+√3 , z = √3

Câu hỏi liên quan

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.