Skip to main content

Cho hình chóp S.ABCD có SA vuông góc với đáy, ABCD là hình chữ nhật với AB = 3a√2, BC = 3a. Gọi M là trung điểm CD và góc giữa (ABCD) với (SBC) bằng 600. Chứng minh rằng (SBM) ⊥ (SAC) và tính thể tích tứ diện SABM

Cho hình chóp S.ABCD có SA vuông góc với đáy, ABCD là hình chữ nhật với
AB = 3a√2, BC =

Câu hỏi

Nhận biết

Cho hình chóp S.ABCD có SA vuông góc với đáy, ABCD là hình chữ nhật với

AB = 3a√2, BC = 3a. Gọi M là trung điểm CD và góc giữa (ABCD) với (SBC) bằng 600. Chứng minh rằng (SBM) ⊥ (SAC) và tính thể tích tứ diện SABM


A.
 VSABM = 6a3√3
B.
 VSABM = 7a3√3
C.
 VSABM = 8a3√3
D.
 VSABM = 9a3√3
Đáp án đúng: D

Lời giải của Luyện Tập 365

Gọi I = BM ∩ AC,suy ra I là trọng tâm của tam giác BCD

=> IM= \dpi{100} \frac{1}{3}BM = \dpi{100} \frac{a\sqrt{6}}{2}; IC = \dpi{100} \frac{1}{3} AC = a√3

=>  IM2 + IC2 = \dpi{100} \frac{18a^{2}}{4} = CM2 => BM ⊥ AC

=> (SBM) ⊥ (SAC)

Ta có SABM =  \dpi{100} \frac{1}{2}AB.d(M, AB) = 1/2.3a√2.3a = \dpi{100} \frac{9a^{2}\sqrt{2}}{2}

Theo bài ra \dpi{100} \widehat{SAB} =  600. Xét tam giác vuông SAB có

SA = ABtan60= 3a√6 => VSABM \dpi{100} \frac{1}{3}.\dpi{100} \frac{9a^{2}\sqrt{2}}{2}.3a√6 = 9a3√3 (đvtt)

Câu hỏi liên quan

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .