Skip to main content

Giải hệ phương trình \left\{\begin{matrix} x + y + 1 + x\sqrt{x^2 + 2} + (y + 1)\sqrt{y^2 + 2y + 3} = 0 & \\ 30^{x - y} = 41(x - y)) - 4^{x - y + 1} \end{matrix}\right.

Giải hệ phương trình

Câu hỏi

Nhận biết

Giải hệ phương trình

\left\{\begin{matrix} x + y + 1 + x\sqrt{x^2 + 2} + (y + 1)\sqrt{y^2 + 2y + 3} = 0 & \\ 30^{x - y} = 41(x - y)) - 4^{x - y + 1} \end{matrix}\right.


A.
(0; -1), (- \frac{1}{2}; \frac{1}{2})
B.
(0; -1), (\frac{1}{2}; - \frac{1}{2})
C.
(0; 1), (- \frac{1}{2}; - \frac{1}{2})
D.
(0; -1), (- \frac{1}{2}; - \frac{1}{2})
Đáp án đúng: D

Lời giải của Luyện Tập 365

 

Đặt a = x – y, phương trình (2) trở thành 30a + 4a + 1 – 41a – 5 = 0.

Xét f(a) = 30a + 4a + 1 – 41a – 5, ∀a

f’(a) = 30aln30 + 4a + 1 ln4 – 41

f’’(a) = 30a ln230 + 4a + 1 ln24 > 0, ∀a

Khi đó f(a) có không quá 1 cực trị hay f(a) = 0 không có quá 2 nghiệm    (3).

mà f(0) = f(1) = 0   (4).

Từ (3) và (4) => phương trình (2) ⇔ [\begin{matrix} x - y = 0 & \\ x - y = 1 & \end{matrix}

+ với x - y = 1 ⇔ x = y + 1, 

(1) ⇔ 2x(1 + \sqrt{x^2 + 2} ) = 0 ⇔ x = 0

=> (x; y) = (0; -1) là nghiệm của hệ đã cho.

+ với x - y = 0 ⇔ x = y

(1) ⇔ x(1 + \sqrt{x^2 + 2} ) + (x + 1)(1 + \sqrt{(x + 1)^2 + 2} ) = 0

Đặt \left\{\begin{matrix} u = \sqrt{x^2 + 2} & \\ v = \sqrt{x^2 + 2x + 3} & \end{matrix}\right. (u, v > 0) => \left\{\begin{matrix} u^{2} = x^2 + 2 & \\ v^{2} = x^2 + 2x + 3 & \end{matrix}\right.

<=> 

Phương trình (1) trở thành (u - v)[(u + v)(1 + \frac{v + u}{2}) + 1/2]

⇔ u = v (vì u, v >0)

khi đó ta có (1) ⇔ \sqrt{x^2 + 2} = \sqrt{x^2 + 2x + 3} ⇔ x = -1/2

suy ra nghiệm của hệ (x;y) = (-1/2; -1/2)

Vậy hệ phương trình có 2 nghiêm (0; -1), (-1/2; -1/2)

 

Câu hỏi liên quan

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).