Skip to main content

Trong mặt phẳng tọa độ Oxy cho đường tròn (C): x2 + y2 - 6x + 2y + 6 = 0 và điểm A(1; 3). Một đường thẳng d đi qua A, gọi B, C là giao điểm của đường thẳng d với (C). Lập phương trình của d sao cho AB + AC nhỏ nhất.

Trong mặt phẳng tọa độ Oxy cho đường tròn (C): x2 + y2 - 6x + 2y + 6 = 0 và điểm A(1; 3).

Câu hỏi

Nhận biết

Trong mặt phẳng tọa độ Oxy cho đường tròn (C): x2 + y2 - 6x + 2y + 6 = 0 và điểm A(1; 3). Một đường thẳng d đi qua A, gọi B, C là giao điểm của đường thẳng d với (C). Lập phương trình của d sao cho AB + AC nhỏ nhất.


A.
 d: x = 2, d: -3x + 4y - 15 = 0
B.
 d: x = 1, d: 3x + 4y - 15 = 0
C.
 d: x = 3, d: 3x - 4y - 15 = 0
D.
 d: x = -1, d: -3x + 4y - 15 = 0
Đáp án đúng: B

Lời giải của Luyện Tập 365

Tâm đường tròn I(3;-1), R = 2; IA = 2√5 = d(I, A) > R = 2 nên điểm A nằm ngoài (C). 

Ta có PA/(C) = AB.AC = d- R2 = 16 và AB + AC ≥ {\sqrt{AB.AC}} = 2.4 = 8

Dấu "=" xảy ra <=> AB = AC = 4. Khi đó d là tiếp tuyến của (C ), d có dạng

a(x - 1) + b(y - 3) = 0 <=> ax + by - a - 3b = 0 

Từ đó ta có:

d(I, d) = 2 <=> \frac{\left | 3a-b-a-3a \right |}{\sqrt{a^{2}+b^{2}}} = 2 <=> 3b2 = 4ab

<=> \left [ \begin{matrix} b=0\\ 4a=3b \end{matrix} chọn\begin{cases} b=0\\ a=1 \end{cases} \vee \begin{cases} b=4\\ a=3 \end{cases}

Vậy phương trình d: x = 1, d: 3x + 4y - 15 = 0

Câu hỏi liên quan

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.