Skip to main content

Chứng minh rằng a > 0, b > 0, c > 0 thì \frac{1}{\sqrt{a}} +\frac{1}{\sqrt{b}} +\frac{1}{\sqrt{c}}\geq \sqrt{3}\left ( \frac{1}{\sqrt{a+2b}} +\frac{1}{\sqrt{b+2c}} +\frac{1}{\sqrt{c+2a}} \right )\left \right )

Chứng minh rằng a > 0, b > 0, c > 0 thì
 + + + +

Câu hỏi

Nhận biết

Chứng minh rằng a > 0, b > 0, c > 0 thì

\frac{1}{\sqrt{a}} +\frac{1}{\sqrt{b}} +\frac{1}{\sqrt{c}}\geq \sqrt{3}\left ( \frac{1}{\sqrt{a+2b}} +\frac{1}{\sqrt{b+2c}} +\frac{1}{\sqrt{c+2a}} \right )\left \right )


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

+ Với a > 0, b > 0, c > 0 ta có :

  (1)

\sqrt{a}+2\sqrt{b} =\sqrt{a}+  \sqrt{2}\sqrt{2b} ≤  \sqrt{(1+2)(a+2b)} +\sqrt{3(a+2b)}  (1)

+ Do (\frac{1}{\sqrt{a}}+\frac{2}{\sqrt{b}})(\sqrt{a}+2\sqrt{b}

      =(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}})(\sqrt{a}+\sqrt{b}+\sqrt{c}) ≥9

nên \frac{1}{\sqrt{a}}+\frac{2}{\sqrt{b}} ≥ \frac{9}{\sqrt{a}+2\sqrt{b}}            (2)

Từ  (1) và (2) ta có :\frac{1}{\sqrt{a}}+\frac{2}{\sqrt{b}} ≥ \frac{3\sqrt{3}}{\sqrt{a+2b}}   (3)

(Với a > 0, b > 0, c > 0 )

Áp dụng (3) ta có

\frac{1}{\sqrt{a}} +\frac{1}{\sqrt{b}} +\frac{1}{\sqrt{c}}\geq \sqrt{3}\left ( \frac{1}{\sqrt{a+2b}} +\frac{1}{\sqrt{b+2c}} +\frac{1}{\sqrt{c+2a}} \right )\left \right )(điều phải chứng minh)

Dâu " = " xảy ra khi và chỉ khi a=b=c

Câu hỏi liên quan

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D.