Skip to main content

Cho các số a, b, c dương thỏa mãn điều kiện a + b + c = 2. Tìm giá trị lớn nhất của   S =\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}

Cho các số a, b, c dương thỏa mãn điều kiện a + b + c = 2. Tìm giá trị lớn nhất của

Câu hỏi

Nhận biết

Cho các số a, b, c dương thỏa mãn điều kiện a + b + c = 2. Tìm giá trị lớn nhất của   S =\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}


A.
\frac{2}{3}
B.
\frac{5}{3}
C.
\frac{5}{4}
D.
\frac{5}{8}
Đáp án đúng: A

Lời giải của Luyện Tập 365

Áp dụng bất dẳng thức Cô si cho 2 số dương (a + b) và \frac{4}{3}

\sqrt{a+b}=\frac{\sqrt{3}}{2}\sqrt{(a+b)\frac{4}{3}}\leq \frac{\sqrt{3}}{2}\frac{a+b+\frac{4}{3}}{2}

\frac{\sqrt{3}}{4}(a + b + \frac{4}{3})

Tương tự ta có: \sqrt{b+c} ≤ \frac{\sqrt{3}}{4}(b + c + \frac{4}{3}

\sqrt{a+c} ≤ \frac{\sqrt{3}}{4}(a + c + \frac{4}{3})

Cộng vế với vế ta được:

S ≤ \frac{\sqrt{3}}{4}(2a + 2b + 2c + 4) = \frac{\sqrt{3}}{4}.8 = 2√3

Vậy max S = 2√3 dấu "=" xảy ra <=> a = b = c = \frac{2}{3}

Câu hỏi liên quan

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .