Skip to main content

Đội tuyển toán lớp 12 trường THPT Trần Hưng Đạo gồm 3 nữ và 12 nam. Nhà trường cần lập 1 đội tuyển gồm 4 em để tham gia kì thi học sinh giỏi tỉnh. Tính xác suất để đội tuyển có ít nhất 2 em nữ.

Đội tuyển toán lớp 12 trường THPT Trần Hưng Đạo gồm 3 nữ và 12 nam. Nhà trường cần

Câu hỏi

Nhận biết

Đội tuyển toán lớp 12 trường THPT Trần Hưng Đạo gồm 3 nữ và 12 nam. Nhà trường cần lập 1 đội tuyển gồm 4 em để tham gia kì thi học sinh giỏi tỉnh. Tính xác suất để đội tuyển có ít nhất 2 em nữ.


A.
P = \frac{4}{13}
B.
P = \frac{3}{13}
C.
P = \frac{1}{13}
D.
P = \frac{2}{13}
Đáp án đúng: D

Lời giải của Luyện Tập 365

Số cách lập đội tuyển gồm 4 em từ 15 em là C_{15}^{4} = 1365 cách.

Chọn 4 học sinh trong đó có ít nhất 2 em nữ, có 2 phương án sau : 

Phương án 1: 

Chọn 2 nữ từ 3 nữ và 2 nam từ 12 nam, số cách chọn là C_{3}^{2}.C_{12}^{2} cách.

Phương án 2: Chọn 3 nữ từ 3 nữ và 1 nam từ 12 nam,số cách chọn là :C_{3}^{3}.C_{1}^{2} cách.

Theo quy tắc cộng có  C_{3}^{2}.C_{12}^{2} + C_{3}^{3}.C_{1}^{2} = 210 cách để chọn 4 em học sinh mà có ít nhất 2 em nữ.

Theo định nghĩa cổ điển, xác suất đội tuyển có ít nhất 2 em nữ là \frac{210}{1365}=\frac{2}{13}

Câu hỏi liên quan

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.