Skip to main content

Cho hình hộp đứng ABCDA’B’C’D’có đáy là hình thoi cạnh a, góc ABC bằng 600,  góc giữa mặt phẳng (A’BD) và mặt phẳng đáy bằng 600. Tính theo a thể tích của hình hộp và khoảng cách giữa CD’ và mặt phẳng (A’BD).

Cho hình hộp đứng ABCDA’B’C’D’có đáy là hình thoi cạnh a, góc ABC bằng 600

Câu hỏi

Nhận biết

Cho hình hộp đứng ABCDA’B’C’D’có đáy là hình thoi cạnh a, góc ABC bằng 600,  góc giữa mặt phẳng (A’BD) và mặt phẳng đáy bằng 600. Tính theo a thể tích của hình hộp và khoảng cách giữa CD’ và mặt phẳng (A’BD).


A.
 V = \frac{3a^{3}}{4} ; d(CD', (A'BD)) = \frac{a\sqrt{3}}{2}
B.
 V = \frac{a^{3}}{4} ; d(CD', (A'BD)) = \frac{a\sqrt{3}}{2}
C.
 V = \frac{5a^{3}}{4} ; d(CD', (A'BD)) = \frac{a\sqrt{3}}{2}
D.
 V = \frac{3a^{3}}{4} ; d(CD', (A'BD)) = \frac{a\sqrt{3}}{4}
Đáp án đúng: D

Lời giải của Luyện Tập 365

Gọi O là tâm hình thoi ABCD → AO ⊥ BD mà AA' ⊥ (ABCD) → A'O ⊥ BD.

\widehat{A'OA} là góc giữa mặt phẳng (A'BD) với đáy → \widehat{A'OA} =  600.

Do \widehat{ABC} = 600 nên tam giác ABC đều. => AO = \frac{a}{2} .

Trong tam giác vuông A'AO ta có AA' = AO.tan60\frac{a\sqrt{3}}{2}

Do đó thể tích của hình hộp là:

V = SABCD.AA’=  \frac{a^{2}\sqrt{3}}{2}.\frac{a\sqrt{3}}{2}=\frac{3a^{3}}{4}

Theo chứng minh trên ta có BD ⊥  (A'AO) => (A'BD) ⊥ (A'AO)

Trong tam giác vuông A'AO dựng đường cao AH ta có AH ⊥ (A'BD) hay

AH = d(A, (A'BD)). 

Do đó, CD' // BA' nên CD' // (A'BD)

Suy ra d(CD', (A'BD)) = d(C, (A'BD)) = d(A,(A'BD)) (vì AO = CO)

= AH = AO.sin60\frac{a\sqrt{3}}{4}

Câu hỏi liên quan

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)