Skip to main content

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) có phương trình x − 2y + z − 3 = 0 và điểm I(1;−2;0). Viết phương trình mặt cầu tâm I cắt mặt phẳng (P) theo một đường tròn có chu vi bằng 6π.  

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) có phương trình x − 2y + z −

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) có phương trình x − 2y + z − 3 = 0 và điểm I(1;−2;0). Viết phương trình mặt cầu tâm I cắt mặt phẳng (P) theo một đường tròn có chu vi bằng 6π.  


A.
x+(y + 2)+ z= \frac{29}{3}
B.
(x - 1)+ (y + 1)+ z= \frac{29}{3}
C.
(x - 1)+ (y + 2)+ z= \frac{29}{3}
D.
(x - 2)+ (y + 2)+ z= \frac{29}{3}
Đáp án đúng: C

Lời giải của Luyện Tập 365

Khoảng cách từ I đến (P): h = \frac{\left | 1-2(-2)+0-3 \right |}{\sqrt{6}}=\frac{2}{\sqrt{6}}

Đường tròn chu vi bằng 6π có bán kính r = 3

Bán kính mặt cầu R= \sqrt{h^{2}+r^{2}}=\sqrt{\frac{29}{3}}

Phương trình mặt cầu: (x - 1)+ (y + 2)+ z= \frac{29}{3}

 

Câu hỏi liên quan

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.