Skip to main content

Giải hệ phương trình: \left\{\begin{matrix} x^{3}-y^{3}+3y^{2}-3x-2=0 & \\ x^{2}+\sqrt{1-x^{2}}-3\sqrt{2y-y^{2}}+2=0 & \end{matrix}\right.

Giải hệ phương trình:

Câu hỏi

Nhận biết

Giải hệ phương trình: \left\{\begin{matrix} x^{3}-y^{3}+3y^{2}-3x-2=0 & \\ x^{2}+\sqrt{1-x^{2}}-3\sqrt{2y-y^{2}}+2=0 & \end{matrix}\right.


A.
(x;y) = (-1;1)
B.
(x;y) = (0;-1)
C.
(x;y) = (0;1)
D.
(x;y) = (1;1)
Đáp án đúng: C

Lời giải của Luyện Tập 365

Hệ \left\{\begin{matrix} x^{3}-y^{3}+3y^{2}-3x-2=0\: \: (1) & \\ x^{2}+\sqrt{1-x^{2}}-3\sqrt{2y-y^{2}}+2=0\: \: (2) & \end{matrix}\right. 

Có điều kiện xác định:  \left\{\begin{matrix} 1-x^{2}\geq 0 & \\ 2y-y^{2}\geq 0 & \end{matrix}\right. 

<=> -1  ≤  x  ≤  1 và 0 ≤ y ≤  2     (*)

- Phương trình (1) <=>  x- 3x = (y - 1)- 3(y - 1)  (1’)

Xét hàm số f(u) = u- 3u nghịch biến trên [-1;1] => Phương trình (1') nghiệm đúng khi và chỉ khi x = y - 1 <=> y = x + 1 (3)

Thế (3) vào (2) ta có phương trình:

x2 – 2\sqrt{1-x^{2}} + 2 = 0 <=> (1-\sqrt{1-x^{2}})^{2}  = 0 <=>  1- x2 = 1

<=> x = 0

Với x = 0 thì y = 1 (thỏa mãn)

Kết luận: Hệ có nghiệm (x;y) = (0;1)

Câu hỏi liên quan

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.