Skip to main content

Trong không gian Oxyz,  cho đường thẳng ∆: \frac{x+2}{1} = \frac{y-1}{1} = \frac{z-3}{-1} và điểm M (1; -3; 2). Viết phương trình mặt phẳng (P) đi qua điểm M và song song với đường thẳng ∆ sao cho khoảng cách từ ∆ đến (P) là lớn nhất.

Trong không gian Oxyz,  cho đường thẳng ∆: 

Câu hỏi

Nhận biết

Trong không gian Oxyz,  cho đường thẳng ∆: \frac{x+2}{1} = \frac{y-1}{1} = \frac{z-3}{-1} và điểm M (1; -3; 2). Viết phương trình mặt phẳng (P) đi qua điểm M và song song với đường thẳng ∆ sao cho khoảng cách từ ∆ đến (P) là lớn nhất.


A.
(P): -x + 4y + z + 13 = 0
B.
(P): -3x + y + z + 13 = 0
C.
(P): -3x + 4y + z = 0
D.
(P): -3x + 4y + z + 13 = 0
Đáp án đúng: D

Lời giải của Luyện Tập 365

Gọi H là hình chiếu của M trên ∆ và K là hình chiếu của H trên (P) thì

d(∆; (P))= HK ≤ HM

Đẳng thức xảy ra khi và chỉ khi K ≡ M, tức là (P) ⊥ HM. Vậy khoảng cách giữa ∆ và mặt phẳng (P) lớn nhất bằng MH khi mặt phẳng (P) vuông góc với MH

Tìm được tọa độ H (-2 ;1 ;3)

Mặt phẳng (P) đi qua M(1 ;-3 ;2), nhận \overline{MH} =(-3 ;4 ;1) là vecto pháp tuyến nên mặt phẳng (P) có phương trình: -3x + 4y + z + 13 = 0 

Vậy mặt phẳng (P) có phương trình là -3x + 4y + z+ 13 = 0

Câu hỏi liên quan

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.