Skip to main content

Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng (P): x+y+z+3 = 0 và hai     điểm A(3;1;1),B(7;3;9). Tìm trên mặt phẳng (P) điểm M sao cho \left | \overrightarrow{MA}+\overrightarrow{MB} \right | đạt giá trị nhỏ nhất. 

Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng (P): x+y+z+3 = 0 và hai &n

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng (P): x+y+z+3 = 0 và hai     điểm A(3;1;1),B(7;3;9). Tìm trên mặt phẳng (P) điểm M sao cho \left | \overrightarrow{MA}+\overrightarrow{MB} \right | đạt giá trị nhỏ nhất. 


A.
M(0; 3; 0)
B.
M(1; -3; 0)
C.
M(0; -3; 1)
D.
M(0; -3; 0)
Đáp án đúng: D

Lời giải của Luyện Tập 365

Gọi I là trung điểm của đoạn AB thì I( 5;2;5)

Ta có: \left | \overrightarrow{MA}+\overrightarrow{MB}\right |=\left | 2\overrightarrow{MI} \right |=2MI

\left | \overrightarrow{MA}+\overrightarrow{MB}\right | đạt giá trị nhỏ nhất khi \Leftrightarrow MI nhỏ nhất \Leftrightarrow M là hihf chiếu của I lến mp (P)

Đường thẳng ∆ qua I và vuông góc với mặt phẳng (P) nhận n = (1;1;1) là VTCP có

phương trình \frac{x-5}{1}=\frac{y-2}{1}=\frac{z-5}{1}

Tọa độ giao điểm của M của ∆ và (P) là nghiệm của hệ phương trình: 

\left\{\begin{matrix} \frac{x-5}{1}=\frac{y-2}{1}=\frac{z-5}{1}& \\ x+y+z+3=0 & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=0 & \\ y=-3 & \\ z=0 & \end{matrix}\right.

Vậy M(0; -3; 0)

Câu hỏi liên quan

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.