Skip to main content

Trong không gian Oxyz , cho tứ diện ABCD , biết B(−1;0;2),C(−1;1;0),D(2;1;−2),vectơ \overrightarrow{ OA} cùng phương với vectơ \overrightarrow{ u} = (0; 1; 1) và thể tích tứ diện ABCD bằng \frac{5}{6}. Tìm tọa độ điểm A.

Trong không gian Oxyz , cho tứ diện ABCD , biết B(−1;0;2),C(−1;1;0),D(2;1;−2),vectơ

Câu hỏi

Nhận biết

Trong không gian Oxyz , cho tứ diện ABCD , biết B(−1;0;2),C(−1;1;0),D(2;1;−2),vectơ \overrightarrow{ OA} cùng phương với vectơ \overrightarrow{ u} = (0; 1; 1) và thể tích tứ diện ABCD bằng \frac{5}{6}. Tìm tọa độ điểm A.


A.
 A(0 ; 1 ; 1)
B.
 A(0 ; -\frac{1}{9} ; -\frac{1}{9} )
C.
 A(0 ; 2 ; 1) và A(0 ; -\frac{1}{9} ; -\frac{1}{9} )
D.
cả A và B
Đáp án đúng: D

Lời giải của Luyện Tập 365

Tìm tọa độ điểm A.

Từ giả thiết có \overrightarrow{OA}= t. \overrightarrow{u}= (0;t;t) ⇒ A(0; t; t)

. Suy ra  [\overrightarrow{BC},\overrightarrow{BD}]=(-2;-6;-3)

 \left [ \overrightarrow{BC},\overrightarrow{BD} \right ]\overrightarrow{BA}=-9t+4

Ta có

VABCD=\left | \frac{1}{6}\left [ \overrightarrow{BC},\overrightarrow{BD} \right ]\overrightarrow{BA}\left |\Leftrightarrow \frac{5}{6}=\frac{1}{6}\left | -9t+4 \right |  ⇔t=1; t=-\frac{1}{9}

Với t =1⇒ A(0;1;1) .

Với t =-\frac{1}{9}< 0, => A(0 ; -\frac{1}{9} ; -\frac{1}{9} )

Vậy có 2 điểm A thỏa là A(0 ; 1 ; 1) và A(0 ; -\frac{1}{9} ; -\frac{1}{9} )

 

Câu hỏi liên quan

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.