Skip to main content

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A với AB = a, các mặt bên là các tam giác cân tại đỉnh S. Hai mặt phẳng (SAB) và (SAC) cùng tạo với mặt phẳng đáy góc 60^{\circ}. Tính côsin của góc giữa hai mặt phẳng (SAB) và (SBC). 

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A với AB = a, các mặt bên

Câu hỏi

Nhận biết

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A với AB = a, các mặt bên là các tam giác cân tại đỉnh S. Hai mặt phẳng (SAB) và (SAC) cùng tạo với mặt phẳng đáy góc 60^{\circ}. Tính côsin của góc giữa hai mặt phẳng (SAB) và (SBC). 


A.
tanα = \sqrt{\frac{20}{3}}
B.
tanα = \sqrt{\frac{10}{3}}
C.
tanα = \sqrt{\frac{5}{3}}
D.
tanα = \sqrt{\frac{1}{3}}
Đáp án đúng: A

Lời giải của Luyện Tập 365

Gọi H là hình chiếu của S lên (ABC). Ta có: SA=SB=SC

=> HA=HB=HC => H là tâm đường tròn ngoại tiếp ∆ABC

Mà ∆ABC vuông tại A => H là trung điểm của BC.

Gọi E;F lần lượt là trung điểm của AB;AC

=> HE ⊥ AB; HF ⊥ AC

=> Góc tạo bởi (SAB); (SAC) và (ABC) lần lượt là góc SEH; SFH

Mà: \widehat{SEH}=\widehat{SFH}=60^{\circ}

=> HE=HF

=> AB=AC=a

Kẻ HK ⊥ SB => góc giữa (SAB) và (SBC) là góc HKA.

Ta có: HA = \frac{a}{\sqrt{2}} ; SH = HF.tan60^{\circ} = \frac{a\sqrt{3}}{2}

∆SHB vuông tại H có đường cao HK nên: \frac{1}{HK^{2}}=\frac{1}{SH^{2}}+\frac{1}{HB^{2}}

=> KH = a\sqrt{\frac{3}{10}}

Tam giác AHK vuông tại H có: tanAKH = \frac{AH}{KH}=\sqrt{\frac{20}{3}}

 

Câu hỏi liên quan

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.