Skip to main content

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông cân tại A. Biết cạnh huyền nằm trên đường thẳng (d): x+7y-31=0, điểm N(1;frac{5}{2}) thuộc đường thẳng AC, điểm M(2;-3) thuộc đường thẳng AB. Xác định tọa độ các đỉnh của tam giác ABC, biết rằng điểm A có hoành độ âm.

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông cân tại A. Biết cạnh huyền nằm t

Câu hỏi

Nhận biết

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông cân tại A. Biết cạnh huyền nằm trên đường thẳng (d): x+7y-31=0, điểm N(1;frac{5}{2}) thuộc đường thẳng AC, điểm M(2;-3) thuộc đường thẳng AB. Xác định tọa độ các đỉnh của tam giác ABC, biết rằng điểm A có hoành độ âm.


A.
A(1;1), B(4;3), C(3;4)
B.
A(-1;1), B(-4;5), C(3;4)
C.
A(-3;2), B(1;3), C(3;4)
D.
A(-2;1), B(2;5), C(2;1)
Đáp án đúng: B

Lời giải của Luyện Tập 365

(AB): a(x-2)+b(y+3)=0 (a2+b2>0)

cos(widehat{ABC})=cos45=frac{|a+7b|}{sqrt{1^{2}+7^{2}}sqrt{a^{2}+b^{2}}}

<=>12a2-7ab-12b2=0 <=>begin{bmatrix} 4a=-3b\3a=4b end{bmatrix}

TH1: 3a=4b => AB: 4x+3y+1=0 => AC:3x-4y+7=0

=> A(-1;1), B(-4;5), C(3;4)

TH2:

4a=-3b => AB: 3x-4y-18=0 => AC: 4x+3y-frac{23}{2}=0

=> A(4;frac{-3}{2}), B(1;3), C(-frac{1}{2};frac{9}{2})   (loại)

Vậy các đỉnh của tam giác ABC là: A(-1;1), B(-4;5), C(3;4)

Câu hỏi liên quan

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}