Skip to main content

Cho hình chóp S.ABCD có đáy là hình thoi cạnh bằng a√3, đường chéo AC=2a. Biết rằng hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy và SC=a√3. Tính thể tích khối chóp S.ABCD và chứng minh rằng hai mặt phẳng (SAB) và (SBC) vuông góc với nhau.

Cho hình chóp S.ABCD có đáy là hình thoi cạnh bằng a√3, đường chéo AC=2a

Câu hỏi

Nhận biết

Cho hình chóp S.ABCD có đáy là hình thoi cạnh bằng a√3, đường chéo AC=2a. Biết rằng hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy và SC=a√3. Tính thể tích khối chóp S.ABCD và chứng minh rằng hai mặt phẳng (SAB) và (SBC) vuông góc với nhau.


A.
VSABC = \frac{a^{3}}{3}(đvtt)
B.
VSABC = \frac{5a^{3}}{3}(đvtt)
C.
VSABC = \frac{7a^{3}}{3}(đvtt)
D.
VSABC = \frac{4a^{3}}{3}(đvtt)
Đáp án đúng: D

Lời giải của Luyện Tập 365

 

Gọi O là giao điểm của AC và BD. Từ giả thiết ta có SO⊥(ABCD).Trong tam giác SOC vuông tại O ta có SO=\sqrt{SC^{2}-OC^{2}}=\sqrt{3a^{2}-a^{2}} = a√2.

Trong tam giác AOB vuông tại O ta có

OB=\sqrt{AB^{2}-OA^{2}} = \sqrt{3a^{2}-a^{2}} = a√2.

Ta có VSABC = \frac{1}{3}.SO.(OB.AC)  = \frac{1}{3}.a√2.a√2.2a = \frac{4a^{3}}{3}(đvtt)

Gọi H là trung điểm của SB. Ta có tam giác SBC cân tại C vì CS=CB=a√3 nên CH⊥SB. Tương tự ta cũng có AH⊥SB. Từ  đó suy ra góc giữa hai mặt phẳng (SAB) và (SBC) là góc giữa hai đường thẳng HA và HC. Từ SB⊥(AHC) =>OH⊥SB

Áp dụng hệ thức lượng trong tam giác SOB vuông tại O ta có

\frac{1}{OH^{2}}=\frac{1}{OS^{2}}+\frac{1}{OB^{2}}=\frac{1}{2a^{2}}+\frac{1}{2a^{2}}=>OH=a

Do đó OH=\frac{1}{2}AC. Trong tam giác AHC có đường trung tuyến kẻ từ H bằng một nửa cạnh đối diện nên tam giác AHC vuông tại H.

Do đó hai mặt phẳng (SAB) và (SBC) vuông góc với nhau.

Câu hỏi liên quan

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .