Skip to main content

Trong không gian với hệ tọa độ Oxyz, cho các điểm A(-1; -1;-2), B(0;1;1) và mặt phẳng (P): x + y + z -1 = 0. Tìm tọa độ hình chiếu vuông góc của A trên (P). Viết phương trình mặt phẳng đi qua A, B và vuông góc với (P).

Trong không gian với hệ tọa độ Oxyz, cho các điểm A(-1; -1;-2), B(0;1;1)

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz, cho các điểm A(-1; -1;-2), B(0;1;1) và mặt phẳng (P): x + y + z -1 = 0. Tìm tọa độ hình chiếu vuông góc của A trên (P). Viết phương trình mặt phẳng đi qua A, B và vuông góc với (P).


A.
H( 1; 1; 1) Phương trình mặt phẳng đi qua A, B và vuông góc với (P) là : x + 2y + z + 1 = 0.
B.
H( -1; 1; 1) Phương trình mặt phẳng đi qua A, B và vuông góc với (P) là : x – 2y - z + 1 = 0.
C.
 H(\frac{2}{3};\frac{2}{3} ; - \frac{1}{3}). Phương trình mặt phẳng đi qua A, B và vuông góc với (P) là : x – 2y + z + 1 = 0.
D.
H( 1; 1; 11) Phương trình mặt phẳng đi qua A, B và vuông góc với (P) là : x – 2y + z - 1 = 0.
Đáp án đúng: C

Lời giải của Luyện Tập 365

Gọi H là hình chiếu vuông góc của A trên (P). khi đó H thuộc đường thẳng đi qua A và vuông góc với ( P )

Suy ra H(-1 + t; - 1 + t; -2 + t ).

H∈(P) ⇔(-1 + t) + (-1 + t) + (- 2 + t) – 1 = 0 ⇔t = \frac{5}{3}.

Do đó H(\frac{2}{3};\frac{2}{3} ; - \frac{1}{3}).

Gọi (Q) là mặt phẳng cần viết phương trình. Ta có \overrightarrow{AB}= (1;2;3) và vec tơ pháp tuyến của (P) là \vec{n} = (1;1;1). Do đó (Q) có vec tơ  pháp tuyến là  \vec{n'}[\overrightarrow{AB};\overrightarrow{n}]= (-1; 2;-1).

Phương trình của mặt phẳng (Q) là : x – 2y + z + 1 = 0.

Câu hỏi liên quan

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx