Skip to main content

Trong không gian với hệ tọa độ Oxyz, cho ba đường thẳng d1:  \frac{x-1}{1} = \frac{y}{-2} = \frac{z-1}{1}; d2: \frac{x-2}{-1} = \frac{y}{3} = \frac{z+1}{-2};  d3: \frac{x+1}{2} = \frac{y-2}{1} = \frac{z+3}{1}. Viết phương trình đường thẳng d vuông góc với đường thẳng d3 đồng thời cắt hai đường thẳng d1, d2 lần lượt tại A,B sao cho độ dài đoạn thẳng AB đạt giá trị nhỏ nhất.

Trong không gian với hệ tọa độ Oxyz, cho ba đường thẳng d1: <

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz, cho ba đường thẳng d1:  \frac{x-1}{1} = \frac{y}{-2} = \frac{z-1}{1}; d2: \frac{x-2}{-1} = \frac{y}{3} = \frac{z+1}{-2};  d3: \frac{x+1}{2} = \frac{y-2}{1} = \frac{z+3}{1}. Viết phương trình đường thẳng d vuông góc với đường thẳng d3 đồng thời cắt hai đường thẳng d1, d2 lần lượt tại A,B sao cho độ dài đoạn thẳng AB đạt giá trị nhỏ nhất.


A.
d: \frac{x-2}{1} = \frac{y+2}{-1} = \frac{z-2}{-1}
B.
d: \frac{x-2}{1} = \frac{y+2}{-1} = \frac{z+2}{-1}
C.
d: \frac{x-2}{1} = \frac{y+2}{-1} = \frac{z+2}{1}
D.
d: \frac{x-2}{1} = \frac{y+2}{-1} = \frac{z-2}{1}
Đáp án đúng: A

Lời giải của Luyện Tập 365

Vì hai điểm A,B lần lượt thuộc hai đường thẳng d1, d2 nên  A(1+a; -2a; 1+a), B(2-b; 3b; -1-2b).

Khi đó \overrightarrow{AB}(1-b-a; 3b+2a; -2-2b-a).

Đường thẳng d3 có VTCP là \overrightarrow{u_{3}}(2; 1; 1). Ta có

\overrightarrow{AB}.\overrightarrow{u_{3}} = 0 ⇔ 2(1-b-a) + (3b+2a) + (-2-2b-a) = 0 ⇔ b = -a

Khi đó \overrightarrow{AB}(1;-a; -2+a).

Ta có AB = \sqrt{1+a^{2}+(a-2)^{2}} = \sqrt{2(a-1)^{2}+3} ≥ √3

Dấu bằng xáy ra khi và chỉ khi a = 1. Khi đó A(2; -2; 2), \overrightarrow{AB}(1; -1; -1)

Vậy d: \frac{x-2}{1} = \frac{y+2}{-1} = \frac{z-2}{-1}.

Câu hỏi liên quan

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.