Skip to main content

Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có điểm C thuộc đường thẳng d: 2x + y + 5 = 0 và A(- 4; 8). Gọi M là điểm đối xứng của B qua C, N là hình chiếu vuông góc của B trên đường thẳng MD. Tìm tọa độ các điểm B và C, biết rằng N(5; - 4).

Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có điểm C thuộ

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có điểm C thuộc đường thẳng d: 2x + y + 5 = 0 và A(- 4; 8). Gọi M là điểm đối xứng của B qua C, N là hình chiếu vuông góc của B trên đường thẳng MD. Tìm tọa độ các điểm B và C, biết rằng N(5; - 4).


A.
B(-4; -7); C(- 1; -7).
B.
B(-4; -7); C(1; -7).
C.
B(-4; 7); C(1; -7).
D.
B(-4; -7); C(1; 7).
Đáp án đúng: B

Lời giải của Luyện Tập 365

Do C∈d nên C(t; -2t – 5). Gọi I là tâm của hình chữ nhật ABCD, suy ra I là trung điểm của AC.

Do đó I(\frac{t-4}{2} ; \frac{-2t+3}{2})

Tam giác BDN vuông tại N nên IN = IB. Suy ra IN = IA.

Do đó ta có phương trình (5 - \frac{t-4}{2})2 + (-4 - \frac{-2t+3}{2})2 = (- 4 - \frac{t-4}{2})2 + (8 - \frac{-2t+3}{2})2 ⇔t = 1. Suy ra C(1; -7)

Do M đối xứng với B qua C nên CM = CB. Mà CB = AD và AC//DM. Theo giả thiết, BN⊥AC và CB = CN. Vậy B là điểm đối xứng của N qua AC. Đường thẳng AC có phương trình: 3x + y + 4 = 0.

Đường thẳng BN qua N vuông góc với AC nên có phương trình x – 3y – 17  = 0. Do đó B(3a + 17; a).

Trung điểm của BN thuộc AC nên 3(\frac{3a+17+5}{2}) +\frac{a-4}{2} +  4 = 0

⇔a = -7. Vậy B(-4; -7).

Câu hỏi liên quan

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.