Skip to main content

Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C):(x − 2)2 + (y −1)2 = 5 và đường thẳng d : x−3y −9 = 0. Từ điểm M thuộc d kẻ hai đường thẳng tiếp xúc với (C) lần lượt tại A và B. Tìm tọa độ điểm M sao cho độ dài AB nhỏ nhất. 

Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C):(x − 2)2 + (y −1)2 = 5 và đường thẳng

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C):(x − 2)2 + (y −1)2 = 5 và đường thẳng d : x−3y −9 = 0. Từ điểm M thuộc d kẻ hai đường thẳng tiếp xúc với (C) lần lượt tại A và B. Tìm tọa độ điểm M sao cho độ dài AB nhỏ nhất. 


A.
M(3;-1)
B.
M(1;-2)
C.
M(3;2)
D.
M(3;-2)
Đáp án đúng: D

Lời giải của Luyện Tập 365

(C) có tâm I(2;1), bán kính  R= √5, d(I,d) = √10 > R nên d không cắt (C)

M ∊d => M(3m+9; m)

Từ tính chất tiếp tuyến đó ta có MI ⊥ AB ại H là trung điểm AB

Trong tam giác vuông AIM ta có \frac{1}{AH^{2}}=\frac{1}{AI^{2}}+\frac{1}{AM^{2}}

=>  AH2 = \frac{AI^{2}.AM^{2}}{AI^{2}+AM^{2}}=\frac{R^{2}(IM^{2}-R^{2})}{IM^{2}} =  R2  -  \frac{R^{4}}{IM^{2}}

Ta có AB nhỏ nhất AH nhỏ nhất ,=> IM nhỏ nhất ( R = √5 không đổi)

Mà  IM2 = (3m+7)2 + (m-1)2 = 10(m+2)2 + 10 ≥ 10 nên suy ra IMmin = √10 khi m = -2

suy ra M(3;-2)

Câu hỏi liên quan

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .