Skip to main content

Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng (∆):x+y+2=0 và đường tròn (C):x2+y2-4x-2y=0. Gọi I là tâm của đường tròn (C), M là điểm thuộc (∆). Qua M kẻ các tiếp tuyến MA, MB đến (C) (A,B là các tiếp điểm). Tìm tọa độ điểm M, biết tứ giác MAIB có diện tích bằng 10

Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng (∆):x+y+2=0 và đường tròn (C):x<

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng (∆):x+y+2=0 và đường tròn (C):x2+y2-4x-2y=0. Gọi I là tâm của đường tròn (C), M là điểm thuộc (∆). Qua M kẻ các tiếp tuyến MA, MB đến (C) (A,B là các tiếp điểm). Tìm tọa độ điểm M, biết tứ giác MAIB có diện tích bằng 10


A.
M1(2;-4) và M2(-3;1)
B.
M1(2;-4) và M2(0;1)
C.
M1(1;2) và M2(-3;1)
D.
M(2;-4)
Đáp án đúng: A

Lời giải của Luyện Tập 365

(học sinh tự vẽ hình)

Đường tròn (C) có tâm I(2;1) và bán kính R=\sqrt{5}

Chuyển phương trình đường thẳng (∆) về dạng tham số:

(∆):\left\{\begin{matrix} x=t\\y=-t-2 \end{matrix}\right., (t∈R) =>M(t;-t-2)

Ta có:

SMABI=2S∆MAI=Ia.MA <=> 10=\sqrt{5}MA <=> MA=2\sqrt{5}

MI2=MA2+IA2=(2\sqrt{5})^{2}+(\sqrt{5})^{2}=25

<=> (t-2)2+(-t-2-1)2=25 <=> 2t2+2t-12=0

<=> \begin{bmatrix} t=2\\t=3 \end{bmatrix} => \begin{bmatrix} M(2;-4)\\M(-3;1) \end{bmatrix}

Vậy tồn tại hai điểm M1(2;-4) và M2(-3;1) thỏa mãn yêu cầu đề bài

Câu hỏi liên quan

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.