Skip to main content

Trong mặt phẳng tọa độ Oxy , cho parabol (P): y2 = 2x và điểm K(2; 0). Đường thẳng d đi qua K cắt (P) tại 2 điểm phân biệt M, N. Chứng minh rằng tâm đường tròn ngoại tiếp tam giác OMN nằm trên đường thẳng d  

Trong mặt phẳng tọa độ Oxy , cho parabol (P): y2 = 2x và điểm K(2; 0). Đ

Câu hỏi

Nhận biết

Trong mặt phẳng tọa độ Oxy , cho parabol (P): y2 = 2x và điểm K(2; 0). Đường thẳng d đi qua K cắt (P) tại 2 điểm phân biệt M, N. Chứng minh rằng tâm đường tròn ngoại tiếp tam giác OMN nằm trên đường thẳng d

 


A.
I ∈ d
B.
I ≠ d
C.
\dpi{100} \notin d 
D.
I ≠ Oy
Đáp án đúng: A

Lời giải của Luyện Tập 365

Trường hợp 1. d ⊥ Ox => d: x = 2. Từ x = 2 và y2 = 2x => M(2; 2) và N(2; -2)

=> \overrightarrow{OM}.\overrightarrow{ON} = 0 (1)

Trường hợp 2: d ⊥ Ox => d: y = kx - 2k. Tọa độ M, N là nghiệm của

\left\{\begin{matrix} y=kx-2k\\ y^{2}=2x \end{matrix}\right.⇔ \left\{\begin{matrix} x=\frac{y^{2}}{2}\\ y=k.\frac{y^{2}}{2} -2k\end{matrix}\right. => ky2 – 2y – 4k = 0  (2)

Để d cẳt (P) tại M, N phân biệt thì (2) phải có nghiệm phân biệt ⇔ k ≠ 0

Gọi M(\frac{y^{2}_{1}}{2} ; y1), N(\frac{y^{2}_{2}}{2}; y2) trong đó  y1, y2 là nghiệm của (2)

Ta có \overrightarrow{OM}.\overrightarrow{ON}=(\frac{y_{1}.y_{2}}{2})^{2}   + y1.y2 = (-2)2 + (-4) = 0  (3)

Từ (1) và (3) suy ra góc MON = 900 => ∆OMN vuông tại O.

Suy ra tâm I của đường tròn ngoại tiếp ∆OMN là trung điểm MB => I ∈ d

Câu hỏi liên quan

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}