Skip to main content

Trong mặt phẳng Oxy cho tam giác có đỉnh A(5; -3), trọng tâm là G(3; 1), đỉnh B thuộc đường thẳng (∆): 2x + y - 4 = 0. Tìm tọa độ đỉnh B và C biết rằng BC = 2√2 và B có tọa độ nguyên.

Trong mặt phẳng Oxy cho tam giác có đỉnh A(5; -3), trọng tâm là G(3; 1), đỉnh B thuộc đường

Câu hỏi

Nhận biết

Trong mặt phẳng Oxy cho tam giác có đỉnh A(5; -3), trọng tâm là G(3; 1), đỉnh B thuộc đường thẳng (∆): 2x + y - 4 = 0. Tìm tọa độ đỉnh B và C biết rằng BC = 2√2 và B có tọa độ nguyên.


A.
 B(1; 3); C(3; 1)
B.
 B(1; -2); C(3; -4)
C.
 B(-1; 2); C(-3; 4)
D.
 B(1; 2); C(3; 4)
Đáp án đúng: D

Lời giải của Luyện Tập 365

Gọi M là trung điểm của BC, ta có:

\overrightarrow{AM} = \frac{3}{2}\overrightarrow{AG} = \frac{3}{2}(-2; 4) = (-3; 6)  ⇔ \left\{\begin{matrix} x_{M}-5=-3\\ y_{M}+3=6 \end{matrix}\right.⇔ M(2; 3)

B ∈ (∆) => B(b; 4 - 2b) => \dpi{100} \overrightarrow{MB}= (b - 2; 1 - 2b)

MB= 2 ⇔ (b - 2)2 + (1 - 2b)2 = 2 ⇔ b = 1 hoặc b = \frac{3}{5} (loại)

=>b = 1 => B(1; 2)

Từ đó C(3; 4).

Vậy B(1; 2); C(3; 4).

Câu hỏi liên quan

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.