Skip to main content

Trong không gian với hệ trục tọa độ Oxyz cho hai điểm A(1; 5; 0), B(3; 3; 6) và đường thẳng ∆ : \frac{x+1}{2}\frac{y-1}{-1}\frac{z}{2} . Viết phương trình đường thẳng  d đi qua B cắt ∆ tại C sao cho diện tích ∆ABC có giá trị nhỏ nhất.

Trong không gian với hệ trục tọa độ Oxyz cho hai điểm A(1; 5; 0), B(3; 3; 6) và đườ

Câu hỏi

Nhận biết

Trong không gian với hệ trục tọa độ Oxyz cho hai điểm A(1; 5; 0), B(3; 3; 6) và đường thẳng ∆ : \frac{x+1}{2}\frac{y-1}{-1}\frac{z}{2} . Viết phương trình đường thẳng  d đi qua B cắt ∆ tại C sao cho diện tích ∆ABC có giá trị nhỏ nhất.


A.
Phương trình d: \left\{\begin{matrix}x=3+2t\\y=3+3t\\z=6+4t\end{matrix}\right..
B.
Phương trình d: \left\{\begin{matrix}x=3+2t\\y=3-3t\\z=6+4t\end{matrix}\right..
C.
Phương trình d: \left\{\begin{matrix} x = 3 + 2t \\y=3+3t\\z= 6-4t\end{matrix}\right..
D.
Phương trình d: \left\{\begin{matrix}x=3-2t\\y=3+3t\\z=6+4t\end{matrix}\right..
Đáp án đúng: A

Lời giải của Luyện Tập 365

Phương trình ∆:\left\{\begin{matrix}x=-1+2t\\y=1-t\\z=2t\end{matrix}\right. => C( - 1 + 2t; 1 – t; 2t)

\overrightarrow{AB}= (2; -2; 6),

\overrightarrow{AC} = (2t – 2; - t – 4; 2t)

=> [\overrightarrow{AB},\overrightarrow{AC}] = (2t + 24; - 12 + 8t; 2t – 12)

=> S∆ABC\frac{1}{2}\sqrt{(2t+24)^{2}+(8t-12)^{2}+(2t-12)^{2}}

= \frac{1}{2}\sqrt{72t^{2}-144t+864}

S∆ABC nhỏ nhất ⇔ t =   1

⇔ C(1; 0 ;2)

Phương trình đường thẳng d qua B(3; 3; 6) và C(1; 0 ; 2)

=> \overrightarrow{u_{d}}= - \overrightarrow{BC}= -( - 2; - 3; - 4) = (2; 3; 4)

=> phương trình d: \left\{\begin{matrix}x=3+2t\\y=3+3t\\z=6+4t\end{matrix}\right.

Câu hỏi liên quan

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.